8 resultados para material flows
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In composite agricultural materials such as grass, tee, medicinal plants; leaves and stems have a different drying time. By this behavior, after leaving the dryer, the stems may have greater moisture content than desired, while the leaves one minor, which can cause either the appearance of fungi or the collapse of the over-dried material. Taking into account that a lot of grass is dehydrated in forced air dryers, especially rotary drum dryers, this research was developed in order to establish conditions enabling to make a separation of the components during the drying process in order to provide a homogeneous product at the end. For this, a rotary dryer consisting of three concentric cylinders and a circular sieve aligned with the more internal cylinder was proposed; so that, once material enters into the dryer in the area of the inner cylinder, stems pass through sieve to the middle and then continue towards the external cylinder, while the leaves continue by the inner cylinder. For this project, a mixture of Ryegrass and White Clover was used. The characteristics of the components of a mixture were: Drying Rate in thin layer and in rotation, Bulk density, Projected Area, Terminal velocity, weight/Area Ratio, Flux through Rotary sieve. Three drying temperatures; 40°C, 60° C and 80° C, and three rotation speeds; 10 rpm, 20 rpm and 40 rpm were evaluated. It was found that the differences in drying time are the less at 80 °C when the dryer rotates at 40 rpm. Above this speed, the material adheres to the walls of the dryer or sieve and does not flow. According to the measurements of terminal velocity of stems and leaves of the components of the mixture, the speed of the air should be less than 1.5 m s-1 in the inner drum for the leaves and less than 4.5 m s-1 in middle and outer drums for stems, in such way that only the rotational movement of the dryer moves the material and achieves a greater residence time. In other hand, the best rotary sieve separation efficiencies were achieved when the material is dry, but the results are good in all the moisture contents. The best rotary speed of sieve is within the critical rotational speed, i.e. 20 rpm. However, the rotational speed of the dryer, including the sieve in line with the inner cylinder should be 10 rpm or less in order to achieve the greatest residence times of the material inside the dryer and the best agitation through the use of lifting flights. With a finite element analysis of a dryer prototype, using an air flow allowing speeds of air already stated, I was found that the best performance occurs when, through a cover, air enters the dryer front of the Middle cylinder and when the inner cylinder is formed in its entirety through a sieve. This way, air flows in almost equal amounts by both the middle and external cylinders, while part of the air in the Middle cylinder passes through the sieve towards the inner cylinder. With this, leaves do not adhere to the sieve and flow along drier, thanks to the rotating movement of the drums and the showering caused by the lifting flights. In these conditions, the differences in drying time are reduced to 60 minutes, but the residence time is higher for the stems than for leaves, therefore the components of the mixture of grass run out of the dryer with the same desired moisture content.
Resumo:
Ein Luft-Erdwärmetauscher (L-EWT) kommt wegen seines niedrigen Energiebedarfs und möglicher guter Aufwandszahlen als umweltfreundliche Versorgungskomponente für Gebäude in Betracht. Dabei ist besonders vorteilhaft, dass ein L-EWT die Umgebungsluft je nach Jahreszeit vorwärmen oder auch kühlen kann. Dem zufolge sind L-EWT zur Energieeinsparung nicht nur für den Wohnhausbau interessant, sondern auch dort, wo immer noch große Mengen an fossiler Energie für die Raumkühlung benötigt werden, im Büro- und Produktionsgebäudesektor. Der Einsatzbereich eines L-EWT liegt zwischen Volumenströmen von 100 m3/h und mehreren 100.000 m3/h. Aus dieser Bandbreite und den instationären Randbedingungen entstehen erhebliche Schwierigkeiten, allgemeingültige Aussagen über das zu erwartende thermische Systemverhalten aus der Vielzahl möglicher Konstruktionsvarianten zu treffen. Hauptziel dieser Arbeit ist es, auf Basis umfangreicher, mehrjähriger Messungen an einer eigens konzipierten Testanlage und eines speziell angepassten numerischen Rechenmodells, Kennzahlen zu entwickeln, die es ermöglichen, die Betriebseigenschaften eines L-EWT im Planungsalltag zu bestimmen und ein technisch, ökologisch wie ökonomisch effizientes System zu identifizieren. Es werden die Kennzahlen elewt (Aufwandszahl), QV (Netto-Volumenleistung), ME (Meterertrag), sowie die Kombination aus v (Strömungsgeschwindigkeit) und VL (Metervolumenstrom) definiert, die zu wichtigen Informationen führen, mit denen die Qualität von Systemvarianten in der Planungsphase bewertet werden können. Weiterführende Erkenntnisse über die genauere Abschätzung von Bodenkennwerten werden dargestellt. Die hygienische Situation der durch den L-EWT transportierten Luft wird für die warme Jahreszeit, aufgrund auftretender Tauwasserbildung, beschrieben. Aus diesem Grund werden alle relevanten lufthygienischen Parameter in mehreren aufwendigen Messkampagnen erfasst und auf pathogene Wirkungen überprüft. Es wird über Sensitivitätsanalysen gezeigt, welche Fehler bei Annahme falscher Randbedingungen eintreten. Weiterhin werden in dieser Arbeit wesentliche, grundsätzliche Erkenntnisse aufbereitet, die sich aus der Betriebsbeobachtung und der Auswertung der umfangreich vorliegenden Messdaten mehrerer Anlagen ergeben haben und für die praktische Umsetzung und die Betriebsführung bedeutend sind. Hinweise zu Materialeigenschaften und zur Systemwirtschaftlichkeit sind detailliert aufgeführt.
Resumo:
This work is concerned with finite volume methods for flows at low mach numbers which are under buoyancy and heat sources. As a particular application, fires in car tunnels will be considered. To extend the scheme for compressible flow into the low Mach number regime, a preconditioning technique is used and a stability result on this is proven. The source terms for gravity and heat are incorporated using operator splitting and the resulting method is analyzed.
Resumo:
The application of nonlinear schemes like dual time stepping as preconditioners in matrix-free Newton-Krylov-solvers is considered and analyzed. We provide a novel formulation of the left preconditioned operator that says it is in fact linear in the matrix-free sense, but changes the Newton scheme. This allows to get some insight in the convergence properties of these schemes which are demonstrated through numerical results.
Resumo:
Topics in education are changing with an ever faster pace. E-Learning resources tend to be more and more decentralised. Users need increasingly to be able to use the resources of the web. For this, they should have tools for finding and organizing information in a decentral way. In this, paper, we show how an ontology-based tool suite allows to make the most of the resources available on the web.
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.
Resumo:
Many efforts are undertaken for sustaining urban agriculture in African cities. This study therefore investigated nutrient management practices in urban vegetable gardens of Bobo Dioulasso, Burkina Faso (West Africa). Nitrogen (N), phosphorus (P), potassium (K), and carbon (C) fluxes were quantified and nutrient balances calculated for three gardens representing the typical commercial gardening + field crops and livestock system (cGCL) and three gardens representing the commercial gardening + semi-commercial field crop system (cGscC). Nutrient and C balances were similarly positive in both production systems reaching annual averages of 688 kg N ha -1, 251 kg P ha-1 yr-1, 189 kg K ha-1, and 31 t C ha-1. Inputs in all gardens exceeded the amounts recommended by the extension service. Gaseous emissions of N and C represented important pathways of N and C losses. The highest emission rates occurred during the hottest periods of the day and the peaks were observed after fertilizer applications. Management recommendations should be geared towards increasing nutrient use efficiencies by better tailoring nutrient availability to crop demand and adjusted fertilization techniques to mitigate N losses.