3 resultados para maize production areas of highly variable rainfall
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Augerelectron emission from foil-excited Ne-ions (6 to 10 MeV beam energy) has been measured. The beam-foil time-of-flight technique has been applied to study electronic transitions of metastable states (delayed spectra) and to determine their lifetimes. To achieve a line identification for the complex structure observed in the prompt spectrum, the spectrum is separated into its isoelectronic parts by an Augerelectron-ion coincidence correlating the emitted electrons and the emitting projectiles of well defined final charge states q_f. Well resolved spectra were obtained and the lines could be identified using intermediate coupling Dirac-Fock multiconfiguration calculations. From the total KLL-Augerelectron transition probabilities observed in the electronion coincidence experiment for Ne (10 MeV) the amount of projectiles with one K-hole just behind a C-target can be estimated. For foil-excited Ne-projectiles in contrast to single collision results the comparison of transition intensities for individual lines with calculated transition probabilities yields a statistical population of Li- and Be-like configurations.
Resumo:
Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i) biomass and nitrogen fixation (^15N natural abundance), (ii) soil carbon and nitrogen stocks and (iii) their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa). Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.
Resumo:
The high cost of maize in Kenya is basically driven by East African regional commodity demand forces and agricultural drought. The production of maize, which is a common staple food in Kenya, is greatly affected by agricultural drought. However, calculations of drought risk and impact on maize production in Kenya is limited by the scarcity of reliable rainfall data. The objective of this study was to apply a novel hyperspectral remote sensing method to modelling temporal fluctuations of maize production and prices in five markets in Kenya. SPOT-VEGETATION NDVI time series were corrected for seasonal effects by computing the standardized NDVI anomalies. The maize residual price time series was further related to the NDVI seasonal anomalies using a multiple linear regression modelling approach. The result shows a moderately strong positive relationship (0.67) between residual price series and global maize prices. Maize prices were high during drought periods (i.e. negative NDVI anomalies) and low during wet seasons (i.e. positive NDVI anomalies). This study concludes that NDVI is a good index for monitoring the evolution of maize prices and food security emergency planning in Kenya. To obtain a very strong correlation for the relationship between the wholesale maize price and the global maize price, future research could consider adding other price-driving factors into the regression models.