7 resultados para maintaining and augmenting Plant design
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The present Thesis looks at the problem of protein folding using Monte Carlo and Langevin simulations, three topics in protein folding have been studied: 1) the effect of confining potential barriers, 2) the effect of a static external field and 3) the design of amino acid sequences which fold in a short time and which have a stable native state (global minimum). Regarding the first topic, we studied the confinement of a small protein of 16 amino acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The confinement of proteins occurs frequently in the cell environment. Some molecules called Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and avoid the formation of aggregates and misfolded proteins. This mechanism of confinement mediated by Chaperones is not yet well understood. In the present work we considered two kinds of potential barriers which try to mimic the confinement induced by a Chaperon molecule. The first kind of potential was a purely repulsive barrier whose only effect is to create a cavity where the protein folds up correctly. The second kind of potential was a barrier which includes both attractive and repulsive effects. We performed Wang-Landau simulations to calculate the thermodynamical properties of 1NJ0. From the free energy landscape plot we found that 1NJ0 has two intermediate states in the bulk (without confinement) which are clearly separated from the native and the unfolded states. For the case of the purely repulsive barrier we found that the intermediate states get closer to each other in the free energy landscape plot and eventually they collapse into a single intermediate state. The unfolded state is more compact, compared to that in the bulk, as the size of the barrier decreases. For an attractive barrier modifications of the states (native, unfolded and intermediates) are observed depending on the degree of attraction between the protein and the walls of the barrier. The strength of the attraction is measured by the parameter $\epsilon$. A purely repulsive barrier is obtained for $\epsilon=0$ and a purely attractive barrier for $\epsilon=1$. The states are changed slightly for magnitudes of the attraction up to $\epsilon=0.4$. The disappearance of the intermediate states of 1NJ0 is already observed for $\epsilon =0.6$. A very high attractive barrier ($\epsilon \sim 1.0$) produces a completely denatured state. In the second topic of this Thesis we dealt with the interaction of a protein with an external electric field. We demonstrated by means of computer simulations, specifically by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states can be modified by means of a field. We have found that an external field can induce several modifications in the thermodynamics of these states: for relatively low magnitudes of the field ($<2.06 \times 10^8$ V/m) no major changes in the states are observed. However, for higher magnitudes than ($6.19 \times 10^8$ V/m) one observes the appearance of a new native state which exhibits a helix-like structure. In contrast, the original native state is a $\beta$-sheet structure. In the new native state all the dipoles in the backbone structure are aligned parallel to the field. The design of amino acid sequences constitutes the third topic of the present work. We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Garcia ({\it work unpublished}). We applied it to the study of off-lattice models. The Rate of Convergence criterion is used to decide if a certain sequence will fold up correctly within a relatively short time. Before the present work, the common way to decide if a certain sequence was a good/bad folder was by performing the whole dynamics until the sequence got its native state (if it existed), or by studying the curvature of the potential energy surface. There are some difficulties in the last two approaches. In the first approach, performing the complete dynamics for hundreds of sequences is a rather challenging task because of the CPU time needed. In the second approach, calculating the curvature of the potential energy surface is possible only for very smooth surfaces. The Rate of Convergence criterion seems to avoid the previous difficulties. With this criterion one does not need to perform the complete dynamics to find the good and bad sequences. Also, the criterion does not depend on the kind of force field used and therefore it can be used even for very rugged energy surfaces.
Resumo:
The objective of this study was to determine the optimum row spacing to improve the productivity of two soybean (Glycine max L.) varieties under the tropical hot sub-moist agroecological conditions of Ethiopia. A two-year split-plot design experiment was conducted to determine the effect of variety (Awasa-95 [early-maturing], Afgat [medium-maturing]) and row spacing (RS: 20, 25, 30, 35, 40, 45, 50, 55, 60 cm) on the productivity, nodulation and weed infestation of soybean. Seed and total dry matter (TDM) yield per ha and per plant, and weed dry biomass per m^2 were significantly affected by RS. Soybean variety had a significant effect on plant density at harvest and some yield components (plant height, number of seeds/pod, and 1000 seed weight). Generally, seed and TDM yield per ha and per plant were high at 40 cm RS, and weed dry biomass per m^2 was higher for RS >= 40 cm than for narrower RS. However, the results did not demonstrate a consistent pattern along the RS gradient. The medium-maturing variety Afgat experienced higher mortality and ended up with lower final plant density at harvest, but higher plant height, number of seeds per pod and 1000 seed weight than the early-maturing variety Awasa-95. The results indicate that 40 cm RS with 5 cm plant spacing within a row can be used for high productivity and low weed infestation of both soybean varieties in the hot sub-moist tropical environment of south-western Ethiopia.
Resumo:
During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.
Resumo:
Conceptual Information Systems unfold the conceptual structure of data stored in relational databases. In the design phase of the system, conceptual hierarchies have to be created which describe different aspects of the data. In this paper, we describe two principal ways of designing such conceptual hierarchies, data driven design and theory driven design and discuss advantages and drawbacks. The central part of the paper shows how Attribute Exploration, a knowledge acquisition tool developped by B. Ganter can be applied for narrowing the gap between both approaches.
Resumo:
Krishin Vigyan Kendras-KVKs (Farm Science Centres) have been established by the Indian Council of Agricultural Research in 569 districts. The trust areas of KVKs are refinement and demonstration of technologies, and training of farmers and extension functionaries. Imparting vocational trainings in agriculture and allied fields for the rural youth is one of its mandates. The study was undertaken to do a formative and summative (outcome and impact) evaluation of the beekeeping and mushroom growing vocational training programmes in the Indian state of Punjab. One-group pre and post evaluation design was employed for conducting a formative and outcome evaluation. The knowledge tests were administered to 35 beekeeping and 25 mushroom cultivation trainees, before and after the training programmes organized in 2004. The trainees significantly gained in knowledge. A separate sample of 640 trainees, trained prior to 2004, was selected for finding the adoption status. Out of 640, a sample of 200 was selected by proportionate sampling technique out of three categories, namely: non-adopters, discontinued-adopters and continued-adopters for evaluating the long-term impact of these training programmes. Ex-post-facto one-shot case study design was applied for this impact analysis. The vocational training programmes have resulted in continued-adoption of beekeeping and mushroom cultivation enterprises by 20% and 51% trained farmers, respectively. Age and trainee occupation had significant influence on the adoption decision of beekeeping vocation, whereas education and family income significantly affected the adoption decision of mushroom cultivation. The continued adopters of beekeeping and mushroom growing had increased their family income by 49% and 24%, respectively. These training programmes are augmenting the dwindling farm income of the farmers in Indian Punjab.
Resumo:
Agriculture in semi-arid and arid regions is constantly gaining importance for the security of the nutrition of humankind because of the rapid population growth. At the same time, especially these regions are more and more endangered by soil degradation, limited resources and extreme climatic conditions. One way to retain soil fertility under these conditions in the long run is to increase the soil organic matter. Thus, a two-year field experiment was conducted to test the efficiency of activated charcoal and quebracho tannin extract as stabilizers of soil organic matter on a sandy soil low in nutrients in Northern Oman. Both activated charcoal and quebracho tannin extract were either fed to goats and after defecation applied to the soil or directly applied to the soil in combination with dried goat manure. Regardless of the application method, both additives reduced decomposition of soil-applied organic matter and thus stabilized and increased soil organic carbon. The nutrient release from goat manure was altered by the application of activated charcoal and quebracho tannin extract as well, however, nutrient release was not always slowed down. While activated charcoal fed to goats, was more effective in stabilising soil organic matter and in reducing nutrient release than mixing it, for quebracho tannin extract the opposite was the case. Moreover, the efficiency of the additives was influenced by the cultivated crop (sweet corn and radish), leading to unexplained interactions. The reduced nutrient release caused by the stabilization of the organic matter might be the reason for the reduced yields for sweet corn caused by the application of manure amended with activated charcoal and quebracho tannin extract. Radish, on the other hand, was only inhibited by the presence of quebracho tannin extract but not by activated charcoal. This might be caused by a possible allelopathic effect of tannins on crops. To understand the mechanisms behind the changes in manure, in the soil, in the mineralisation and the plant development and to resolve detrimental effects, further research as recommended in this dissertation is necessary. Particularly in developing countries poor in resources and capital, feeding charcoal or tannins to animals and using their faeces as manure may be promising to increase soil fertility, sequester carbon and reduce nutrient losses, when yield reductions can be resolved.
Resumo:
During the 6th International Sustainable Food Planning Conference, the so-called Design LABs partly replaced the regular parallel sessions. The reason for this change was twofold. On the one hand it aims to break through an endless series of parallel presentations, and on the other hand the LAB’s aim was to produce innovative design solutions for increasing the amount of food production in the city. This article describes this experiment to enhance the delivery of urban design concepts, which could substantially produce more food than current models. During the conference each of the parallel sessions half of the time consisted of a design-LAB, in which participants were brought together around a map with the task to design a substantial amount of food productive spaces in the case study site. The results of this experiment were dual: 1. a very committed attitude of delegates to this part of the conference and 2. the design tasks resulted in innovative design results. These results not only emphasise the potential design measures onsite but also pledged for a strong and more intensive connectivity with the city and the landscape around it. This makes it possible to link the supply and use of resources with the typology of the region, hence determining an effective and productive urban agriculture system.