4 resultados para live cell imaging
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.
Resumo:
Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.
Resumo:
This study aimed at evaluating the effects of different levels of rosemary (Rosmarinus officinalis) extract on growth rate, hematology and cell-mediated immune response in Markhoz newborn goat kids. Twenty four goat kids (aged 7 +/- 3 days) were randomly allotted to four groups with six replicates. The groups included: control, T1, T2 and T3 groups which received supplemented-milk with 0, 100, 200 and 400mg aqueous rosemary extract per kg of live body weight per day for 42 days. Body weights of kids were measured weekly until the end of the experiment. On day 42, 10 ml blood samples were collected from each kid through the jugular vein. Cell-mediated immune response was assessed through the double skin thickness after intradermal injection of phyto-hematoglutinin (PHA) at day 21 and 42. No significant differences were seen in initial body weight, average daily gain (ADG) and total gain. However, significant differences in globulin (P <0.05), and white blood cells (WBC) (P <0.001) were observed. There were no significant differences in haemoglobin (Hb), packed cell volume (PCV), red blood cells (RBC), lymphocytes and neutrophils between the treatments. Skin thickness in response to intra dermal injection of PHA significantly increased in the treated groups as compared to the control group at day 42 (P< 0.01) with the T3 group showing the highest response to PHA injection. In conclusion, the results indicated that aqueous rosemary extract supplemented-milk had a positive effect on immunity and skin thickness of newborn goat kids.
Resumo:
The present study was carried out to evaluate the effect of different levels of garlic extract supplemented in milk on growth rate, haematology and cell–mediated immune response of Markhoz newborn goat kids. Twenty four newborn goat kids (aged 7+/-3days) were randomly assigned to four groups. The groups consisted of control (received milk without garlic extract), T1, T2 and T3 which received milk supplemented with 62.5, 125 and 250 mg aqueous garlic extract per kg live weight per day for 42 days, respectively. Body weights were measured weekly throughout the experimental period. At day 42, about 10 ml blood samples were collected from each kid via the jugular vein for haematological study. Cell–mediated immune response was evaluated through double skin thickness after intradermal injection of phyto-hematogglutinin (PHA) at day 21 and 42. Total gain was significantly higher for kids in T3 (P<0.05) compared with the control group. Average daily gain (ADG) in T3 group in week 4–5 was higher (P<0.05). Significant differences in globulin (P<0.01), hemoglobin (Hb; P<0.001), hematocrit (PCV; P<0.001), erythrocyte (RBC; P<0.001), neutrophil (P<0.001), lymphocyte (P<0.001) and leukocyte (WBC; P<0.001) were observed among groups. Hb, PCV, RBC, lymphocytes and WBC were higher in kids given garlic extract supplementation. There was a significant difference of double skin thickness among the groups at day 42 (P<0.01). In conclusion, this study indicated that milk supplemented with aqueous garlic extract improved growth rate and immunity of newborn goat kids.