2 resultados para linker polypeptides
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
ZUSAMMENFASSUNG: Proteinkinasen übernehmen zentrale Aufgaben in der Signaltransduktion höherer Zellen. Dabei ist die cAMP-abhängige Proteinkinase (PKA) bezüglich ihrer Struktur und Funktion eine der am besten charakterisierten Proteinkinasen. Trotzdem ist wenig über direkte Interaktionspartner der katalytischen Untereinheiten (PKA-C) bekannt. In einem Split-Ubiquitin basiertem Yeast Two Hybrid- (Y2H-)System wurden potenzielle Interaktionspartner der PKA-C identifiziert. Als Bait wurden sowohl die humane Hauptisoform Cα (hCα) als auch die Proteinkinase X (PrKX) eingesetzt. Nach der Bestätigung der Funktionalität der PKA-C-Baitproteine, dem Nachweis der Expression und der Interaktion mit dem bekannten Interaktionspartner PKI wurde ein Y2H-Screen gegen eine Mausembryo-cDNA-Expressionsbibliothek durchgeführt. Von 2*10^6 Klonen wurden 76 Kolonien isoliert, die ein mit PrKX interagierendes Preyprotein exprimierten. Über die Sequenzierung der enthaltenen Prey-Vektoren wurden 25 unterschiedliche, potenzielle Interaktionspartner identifiziert. Für hCα wurden über 2*10^6 S. cerevisiae-Kolonien untersucht, von denen 1.959 positiv waren (1.663 unter erhöhter Stringenz). Über die Sequenzierung von ca. 10% der Klone (168) konnten Sequenzen für 67 verschiedene, potenzielle Interaktionspartner der hCα identifiziert werden. 15 der Preyproteine wurden in beiden Screens identifiziert. Die PKA-C-spezifische Wechselwirkung der insgesamt 77 Preyproteine wurde im Bait Dependency Test gegen largeT, ein Protein ohne Bezug zum PKA-System, untersucht. Aus den PKA-C-spezifischen Bindern wurden die löslichen Preyproteine AMY-1, Bax72-192, Fabp3, Gng11, MiF, Nm23-M1, Nm23-M2, Sssca1 und VASP256-375 für die weitere in vitro-Validierung ausgewählt. Die Interaktion von FLAG-Strep-Strep-hCα (FSS-hCα) mit den über Strep-Tactin aus der rekombinanten Expression in E. coli gereinigten One-STrEP-HA-Proteinen (SSHA-Proteine) wurde über Koimmunpräzipitation für SSHA-Fabp3, -Nm23-M1, -Nm23-M2, -Sssca1 und -VASP256-375 bestätigt. In SPR-Untersuchungen, für die hCα kovalent an die Oberfläche eines CM5-Sensorchips gekoppelt wurde, wurden die ATP/Mg2+-Abhängigkeit der Bindungen sowie differentielle Effekte der ATP-kompetitiven Inhibitoren H89 und HA-1077 untersucht. Freie hCα, die vor der Injektion zu den SSHA-Proteinen gegeben wurde, kompetierte im Gegensatz zu FSS-PrKX die Bindung an die hCα-Oberfläche. Erste kinetische Analysen lieferten Gleichgewichtsdissoziationskonstanten im µM- (SSHA-Fabp3, -Sssca1), nM- (SSHA-Nm23-M1, –M2) bzw. pM- (SSHA-VASP256-375) Bereich. In funktionellen Analysen konnte eine Phosphorylierung von SSHA-Sssca1 und VASP256-375 durch hCα und FSS-PrKX im Autoradiogramm nachgewiesen werden. SSHA-VASP256-375 zeigte zudem eine starke Inhibition von hCα im Mobility Shift-Assay. Dieser inhibitorische Effekt sowie die hohe Affinität konnten jedoch auf eine Kombination aus der Linkersequenz des Vektors und dem N-Terminus von VASP256-375 zurückgeführt werden. Über die Wechselwirkungen der hier identifizierten Interaktionspartner Fabp3, Nm23-M1 und Nm23-M2 mit hCα können in Folgeuntersuchungen neue PKA-Funktionen insbesondere im Herzen sowie während der Zellmigration aufgedeckt werden. Sssca1 stellt dagegen ein neues, näher zu charakterisierendes PKA-Substrat dar.
Resumo:
Hyperpolarisations-aktivierte zyklonukleotid-gesteuerte (HCN) Kanäle übernehmen wichtige Funktionen in der Regulation der Herz- und Neuronalaktivität und können über einen dualen Mechanismus aus Membranhyperpolarisation und der Bindung von zyklischen Nukleotiden aktiviert werden. Ein großes Ziel der aktuellen Forschung ist die Entwicklung neuartiger Inhibitoren, die einer Fehlregulation der Kanäle entgegenwirken. In der vorliegenden Arbeit wurde die Regulation von HCN Kanälen durch zyklische Nukleotide im Detail analysiert, indem erstmals ein umfassender Screen mit 48 unterschiedlichen Zyklonukleotid-Analoga am C-terminalen Bereich (bestehend aus C-Linker und Zyklonukleotid-Bindedomäne) der drei Isoformen HCN1, HCN2 und HCN4 durchgeführt wurde. Mit Hilfe eines Fluoreszenzpolarisations-Assays wurde der Einfluss von Modifikationen in der Base, der Ribose und dem zyklischen Phosphat auf die Bindungsaffinitäten innerhalb der Zyklonukleotid-Bindedomäne untersucht. Zyklonukleotid-Analoga mit Modifikationen an der Position 7 und 8 der Base verschoben die apparenten Affinitäten im Vergleich zu den beiden natürlich vorkommenden Zyklonukleotiden cAMP und cGMP vom mikromolaren in den nanomolaren Bereich. Selektiv für die HCN4 Isoform erwiesen sich Zyklonukleotid-Analoga mit Modifikationen an der Position 6 der Base, während Modifikationen an der Position 8 der Base zu einer höheren Affinität für die HCN2 Isoform führten. Im Gegensatz zu HCN2 und HCN4 zeigte die HCN1 Isoform besonders hohe Affinitäten für Zyklonukleotid-Analoga mit Modifikationen an der Position 8 von cGMP. Eine Substitution der 2’-Hydroxylgruppe erlaubte keine Bindung an die HCN Kanäle. Mit 7-CH-cAMP konnte ein hochaffines Bindemolekül für HCN Kanäle identifiziert werden, denn der Austausch eines Stickstoffs gegen eine CH-Einheit an Position 7 der Base führte zu einer 100-fachen Steigerung der Affinität im Vergleich zu cAMP. In Übereinstimmung mit der hochaffinen Bindung konnte in kinetischen Analysen eine langsamere Dissoziationsrate für 7-CH-cAMP gemessen werden. Anhand thermodynamischer Messungen konnte ein entropisch favorisierter Bindungsmodus für 7-CH-cAMP im Vergleich zu cAMP identifiziert werden. Basierend auf einer Kristallstruktur des HCN4 CNBD:7-CH-cAMP Komplexes (2,5 Å) lässt sich erklären, dass 7-CH-cAMP durch seine höhere Lipohilie im Vergleich zu cAMP eine stärkere Präferenz für das hydrophobe Netzwerk zwischen Protein und Base besitzt. In detaillierten, vergleichenden Analysen mit den zyklonukleotidbindenden Proteinen PKA Typ I und II, hPKGIβ und Epac 1 und 2 konnte gezeigt werden, dass 7-CH-cAMP die höchsten Affinitäten für die drei Isoformen der HCN Kanäle aufwies. Somit könnte sich 7-CH-cAMP als vielversprechender Kandidat für die selektive Regulation von HCN Kanälen in vitro und in lebenden Zellen eignen und möglicherweise einen wichtigen Beitrag als krankheitsrelevanter Effektor leisten.