8 resultados para light-matter interaction
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Ultrafast laser pulses have become an integral part of the toolbox of countless laboratories doing physics, chemistry, and biological research. The work presented here is motivated by a section in the ever-growing, interdisciplinary research towards understanding the fundamental workings of light-matter interactions. Specifically, attosecond pulses can be useful tools to obtain the desired insight. However access to, and the utility of, such pulses is dependent on the generation of intense, few-cycle, carrier-envelope-phase stabilized laser pulses. The presented work can be thought of as a sort of roadmap towards the latter. From the oscillator which provides the broadband seed to amplification methods, the integral pieces necessary for the generation of attosecond pulses are discussed. A range of topics from the fundamentals to design challenges is presented, outfitting the way towards the practical implementation of an intense few-cycle carrier-envelope-phase stabilized laser source.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
Soil organic matter (SOM) vitally impacts all soil functions and plays a key role in the global carbon (C) cycle. More than 70% of the terrestric C stocks that participate in the active C cycle are stored in the soil. Therefore, quantitative knowledge of the rates of C incorporation into SOM fractions of different residence time is crucial to understand and predict the sequestration and stabilization of soil organic carbon (SOC). Consequently, there is a need of fractionation procedures that are capable of isolating functionally SOM fractions, i.e. fractions that are defined by their stability. The literature generally refers to three main mechanisms of SOM stabilization: protection of SOM from decomposition by (i) its structural composition, i.e. recalcitrance, (ii) spatial inaccessibility and/or (iii) interaction with soil minerals and metal ions. One of the difficulties in developing fractionation procedures for the isolation of functional SOM fractions is the marked heterogeneity of the soil environment with its various stabilization mechanisms – often several mechanisms operating simultaneously – in soils and soil horizons of different texture and mineralogy. The overall objective of the present thesis was to evaluate present fractionation techniques and to get a better understanding of the factors of SOM sequestration and stabilization. The first part of this study is attended to the structural composition of SOM. Using 13C cross-polarization magic-angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, (i) the effect of land use on SOM composition was investigated and (ii) examined whether SOM composition contributes to the different stability of SOM in density and aggregate fractions. The second part of the present work deals with the mineral-associated SOM fraction. The aim was (iii) to evaluate the suitability of chemical fractionation procedures used in the literature for the isolation of stable SOM pools (stepwise hydrolysis, treatments using oxidizing agents like Na2S2O8, H2O2, and NaOCl as well as demineralization of the residue obtained by the NaOCl treatment using HF (NaOCl+HF)) by pool sizes, 13C and 14C data. Further, (iv) the isolated SOM fractions were compared to the inert organic matter (IOM) pool obtained for the investigated soils using the Rothamsted Carbon Model and isotope data in order to see whether the tested chemical fractionation methods produce SOM fractions capable to represent this pool. Besides chemical fractionation, (v) the suitability of thermal oxidation at different temperatures for obtaining stable SOC pools was evaluated. Finally, (vi) the short-term aggregate dynamics and the factors that impact macroaggregate formation and C stabilization were investigated by means of an incubation study using treatments with and without application of 15N labeled maize straw of different degradability (leaves and coarse roots). All treatments were conducted with and without the addition of fungicide. Two study sites with different soil properties and land managements were chosen for these investigations. The first one, located at Rotthalmünster, is a Stagnic Luvisol (silty loam) under different land use regimes. The Ah horizons of a spruce forest and continuous grassland and the Ap and E horizons of two plots with arable crops (continuous maize and wheat cropping) were examined. The soil of the second study site, located at Halle, is a Haplic Phaeozem (loamy sand) where the Ap horizons of two plots with arable crops (continuous maize and rye cropping) were investigated. Both study sites had a C3-/C4-vegetational change on the maize plot for the purpose of tracing the incorporation of the younger, maize-derived C into different SOM fractions and the calculation of apparent C turnover times of these. The Halle site is located near a train station and industrial areas, which caused a contamination with high amounts of fossil C. The investigation of aggregate and density fractions by 13C CPMAS NMR spectroscopy revealed that density fractionation isolated SOM fractions of different composition. The consumption of a considerable part (10–20%) of the easily available O-alkyl-C and the selective preservation of the more recalcitrant alkyl-C when passing from litter to the different particulate organic matter (POM) fractions suggest that density fractionation was able to isolate SOM fractions with different degrees of decomposition. The spectra of the aggregate fractions resembled those of the mineral-associated SOM fraction obtained by density fractionation and no considerable differences were observed between aggregate size classes. Comparison of plant litter, density and aggregate size fractions from soil under different land use showed that the type of land use markedly influenced the composition of SOM. While SOM of the acid forest soil was characterized by a large content (> 50%) of POM, which contained high amounts of spruce-litter derived alkyl-C, the organic matter in the biologically more active grassland and arable soils was dominated by mineral-associated SOM (> 95%). This SOM fraction comprised greater proportions of aryl- and carbonyl-C and is considered to contain a higher amount of microbially-derived organic substances. Land use can alter both, structure and stability of SOM fractions. All applied chemical treatments induced considerable SOC losses (> 70–95% of mineral-associated SOM) in the investigated soils. The proportion of residual C after chemical fractionation was largest in the arable Ap and E horizons and increased with decreasing C content in the initial SOC after stepwise hydrolysis as well as after the oxidative treatments with H2O2 and Na2S2O8. This can be expected for a functional stable pool of SOM, because it is assumed that the more easily available part of SOC is consumed first if C inputs decrease. All chemical treatments led to a preferential loss of the younger, maize-derived SOC, but this was most pronounced after the treatments with Na2S2O8 and H2O2. After all chemical fractionations, the mean 14C ages of SOC were higher than in the mineral-associated SOM fraction for both study sites and increased in the order: NaOCl < NaOCl+HF ≤ stepwise hydrolysis << H2O2 ≈ Na2S2O8. The results suggest that all treatments were capable of isolating a more stable SOM fraction, but the treatments with H2O2 and Na2S2O8 were the most efficient ones. However, none of the chemical fractionation methods was able to fit the IOM pool calculated using the Rothamsted Carbon Model and isotope data. In the evaluation of thermal oxidation for obtaining stable C fractions, SOC losses increased with temperature from 24–48% (200°C) to 100% (500°C). In the Halle maize Ap horizon, losses of the young, maize-derived C were considerably higher than losses of the older C3-derived C, leading to an increase in the apparent C turnover time from 220 years in mineral-associated SOC to 1158 years after thermal oxidation at 300°C. Most likely, the preferential loss of maize-derived C in the Halle soil was caused by the presence of the high amounts of fossil C mentioned above, which make up a relatively large thermally stable C3-C pool in this soil. This agrees with lower overall SOC losses for the Halle Ap horizon compared to the Rotthalmünster Ap horizon. In the Rotthalmünster soil only slightly more maize-derived than C3-derived SOC was removed by thermal oxidation. Apparent C turnover times increased slightly from 58 years in mineral-associated SOC to 77 years after thermal oxidation at 300°C in the Rotthalmünster Ap and from 151 to 247 years in the Rotthalmünster E horizon. This led to the conclusion that thermal oxidation of SOM was not capable of isolating SOM fractions of considerably higher stability. The incubation experiment showed that macroaggregates develop rapidly after the addition of easily available plant residues. Within the first four weeks of incubation, the maximum aggregation was reached in all treatments without addition of fungicide. The formation of water-stable macroaggregates was related to the size of the microbial biomass pool and its activity. Furthermore, fungi were found to be crucial for the development of soil macroaggregates as the formation of water-stable macroaggregates was significantly delayed in the fungicide treated soils. The C concentration in the obtained aggregate fractions decreased with decreasing aggregate size class, which is in line with the aggregate hierarchy postulated by several authors for soils with SOM as the major binding agent. Macroaggregation involved incorporation of large amounts maize-derived organic matter, but macroaggregates did not play the most important role in the stabilization of maize-derived SOM, because of their relatively low amount (less than 10% of the soil mass). Furthermore, the maize-derived organic matter was quickly incorporated into all aggregate size classes. The microaggregate fraction stored the largest quantities of maize-derived C and N – up to 70% of the residual maize-C and -N were stored in this fraction.
Resumo:
Spiro-starburst-structures with symmetric globular structures in forms of first and second generations that readily form stable amorphous glasses have been synthesized and then characterised in this work. During the synthesis of these materials, possibilities of the extension of the chains of the phenyl rings in 2,2’,7 and 7’-positions of the central core of the spirobifluorene as well as the 2’,7 and 7’-positions of the terminal spirobifluorene units of the spiro-starburst-structures have been investigated so that solubilities and morphologies of the compounds are not negatively influenced. Their morphological properties have been explored by recording their decomposition temperature and glass transition temperature. These compounds possessing two perpendicular arrangement of the two molecular halves show high glass transition temperature (Tg), which is one of the most important parameter indicating the stability of the amorphous state of the material for optoelectronic devices like organic light emitting diodes. Within the species of second generation compounds, for example, 4-spiro3 shows the highest Tg (330 °C) and the highest branching degree. When one [4B(SBF)SBF-SBF 84] or two [4SBFSBF-SBF 79] terminal spirobifluorene units are removed, the Tg decreases to 318 °C and 307 °C respectively. Photo absorption and fluorescence spectra and cyclic voltammetry measurements are taken in account to characterize the optoelectronic properties of the compounds. Spiro-starburst-structures emit radiation in the blue region of the visible spectrum. The peak maxima of absorption and emission spectra are observed to be at higher wavelength in the molecules with longer chromophore chains than in the molecules with shorter chromophore chains. Excitation spectra are monitored with their emission peak maxima. The increasing absorbing species in molecule leads to increasing molar extinction coefficient. In the case of 4B(TP)SBF-SBF 53 and 4B(SBF)SBF-SBF 84, the greater values of the molar extinction coefficients (43*104 and 44*104 L mol-1 cm-1 respectively) are the evidences of the presence of four times octiphenyl conjugation rings and eight times terminal fluorene units respectively. The optical properties of solid states of these compounds in the form of thin film indicate that the intermolecular interaction and aggregation of individual molecules in neat amorphous films are effectively hindered by their sterically demanding structures. Accordingly, in solid state, they behave like isolated molecules in highly dilute solution. Cyclic voltammetry measurements of these compounds show electrochemically reversibility and stability. Furthermore, the zeolitic nature (host-guest) of the molecular sieve of the synthesized spiro-starburst-structures has been analysed by thermogravimetric analysis method.
Resumo:
Type and rate of fertilizers influence the level of soil organic carbon (Corg) and total nitrogen (Nt) markedly, but the effect on C and N partitioning into different pools is open to question. The objectives of the present work were to: (i) quantify the impact of fertilizer type and rate on labile, intermediate and passive C and N pools by using a combination of biological, chemical and mathematical methods; (ii) explain previously reported differences in the soil organic matter (SOM) levels between soils receiving farmyard manure with or without biodynamic preparations by using Corg time series and information on SOM partitioning; and (iii) quantify the long-term and short-term dynamics of SOM in density fractions and microbial biomass as affected by fertilizer type and rate and determine the incorporation of crop residues into labile SOM fractions. Samples were taken from a sandy Cambisol from the long-term fertilization trial in Darmstadt, Germany, founded in 1980. The nine treatments (four field replicates) were: straw incorporation plus application of mineral fertilizer (MSI) and application of rotted farmyard manure with (DYN) or without (FYM) addition of biodynamic preparations, each at high (140 – 150 kg N ha-1 year-1; MSIH, DYNH, FYMH), medium (100 kg N ha-1 year-1; MSIM, DYNM, FYMM) and low (50 – 60 kg N ha-1 year-1; MSIL, DYNL, FYML) rates. The main findings were: (i) The stocks of Corg (t ha-1) were affected by fertilizer type and rate and increased in the order MSIL (23.6), MSIM (23.7), MSIH (24.2) < FYML (25.3) < FYMM (28.1), FYMH (28.1). Stocks of Nt were affected in the same way (C/N ratio: 11). Storage of C and N in the modelled labile pools (turnover times: 462 and 153 days for C and N, respectively) were not influenced by the type of fertilizer (FYM and MSI) but depended significantly (p ≤ 0.05) on the application rate and ranged from 1.8 to 3.2 t C ha 1 (7 – 13% of Corg) and from 90 to 140 kg N ha-1 (4-5% of Nt). In the calculated intermediate pool (C/N ratio 7), stocks of C were markedly higher in FYM treatments (15-18 t ha-1) compared to MSI treatments (12-14 t ha-1). This showed that differences in SOM stocks in the sandy Cambisol induced by fertilizer rate may be short-lived in case of changing management, but differences induced by fertilizer type may persist for decades. (ii) Crop yields, estimated C inputs (1.5 t ha-1 year-1) with crop residue, microbial bio¬mass C (Cmic, 118 – 150 mg kg-1), microbial biomass N (17 – 20 mg kg-1) and labile C and N pools did not differ significantly between FYM and DYN treatments. However, labile C increased linearly with application rate (R2 = 0.53) from 7 to 11% of Corg. This also applied for labile N (3.5 to 4.9% of Nt). The higher contents of Corg in DYN treatments existed since 1982, when the first sampling was conducted for all individual treatments. Contents of Corg between DYN and FYM treatments con-verged slightly since then. Furthermore, at least 30% of the difference in Corg was located in the passive pool where a treatment effect could be excluded. Therefore, the reported differences in Corg contents existed most likely since the beginning of the experiment and, as a single factor of biodynamic agriculture, application of bio-dynamic preparations had no effect on SOM stocks. (iii) Stocks of SOM, light fraction organic C (LFOC, ρ ≤ 2.0 g cm-3), light fraction organic N and Cmic decreased in the order FYMH > FYML > MSIH, MSIL for all sampling dates in 2008 (March, May, September, December). However, statistical significance of treatment effects differed between the dates, probably due to dif-ferences in the spatial variation throughout the year. The high proportion of LFOC on total Corg stocks (45 – 55%) highlighted the importance of selective preservation of OM as a stabilization mechanism in this sandy Cambisol. The apparent turnover time of LFOC was between 21 and 32 years, which agreed very well with studies with substantially longer vegetation change compared to our study. Overall, both approaches; (I) the combination of incubation, chemical fractionation and simple modelling and (II) the density fractionation; provided complementary information on the partitioning of SOM into pools of different stability. The density fractionation showed that differences in Corg stocks between FYM and MSI treatments were mainly located in the light fraction, i.e. induced by higher recalcitrance of the organic input in the FYM treatments. Moreover, the use of the combination of biological, chemical and mathematical methods indicated that effects of fertilizer rate on total Corg and Nt stocks may be short-lived, but that the effect of fertilizer type may persist for longer time spans in the sandy Cambisol.
Resumo:
This study uses data from a sample survey of 200 households drawn from a mountainous commune in Vietnam’s North Central Coast region to measure and explain relative poverty. Principal components analysis is used to construct a multidimensional index of poverty outcomes from variables measuring household income and the value of domestic assets. This index of poverty is then regressed on likely causes of poverty including different forms of resource endowment and social exclusion defined by gender and ethnicity. The ordinary least squares estimates indicate that poverty is indeed influenced by ethnicity, partly through its interaction with social capital. However, poverty is most strongly affected by differences in human and social capital. Differences in the amount of livestock and high quality farmland owned also matter. Thai households are poorer than their Kinh counterparts even when endowed with the same levels of human, social, physical and natural capital considered in the study. This empirical result provides a rationale for further research on the causal relationship between ethnicity and poverty outcomes.
Resumo:
Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.