11 resultados para laser ion source
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
We introduce quantum sensing schemes for measuring very weak forces with a single trapped ion. They use the spin-motional coupling induced by the laser-ion interaction to transfer the relevant force information to the spin-degree of freedom. Therefore, the force estimation is carried out simply by observing the Ramsey-type oscillations of the ion spin states. Three quantum probes are considered, which are represented by systems obeying the Jaynes-Cummings, quantum Rabi (in 1D) and Jahn-Teller (in 2D) models. By using dynamical decoupling schemes in the Jaynes-Cummings and Jahn-Teller models, our force sensing protocols can be made robust to the spin dephasing caused by the thermal and magnetic field fluctuations. In the quantum-Rabi probe, the residual spin-phonon coupling vanishes, which makes this sensing protocol naturally robust to thermally-induced spin dephasing. We show that the proposed techniques can be used to sense the axial and transverse components of the force with a sensitivity beyond the yN/\wurzel{Hz}range, i.e. in the xN/\wurzel{Hz}(xennonewton, 10^−27). The Jahn-Teller protocol, in particular, can be used to implement a two-channel vector spectrum analyzer for measuring ultra-low voltages.
Resumo:
Many nonlinear optical microscopy techniques based on the high-intensity nonlinear phenomena were developed recent years. A new technique based on the minimal-invasive in-situ analysis of the specific bound elements in biological samples is described in the present work. The imaging-mode Laser-Induced Breakdown Spectroscopy (LIBS) is proposed as a combination of LIBS, femtosecond laser material processing and microscopy. The Calcium distribution in the peripheral cell wall of the sunflower seedling (Helianthus Annuus L.) stem is studied as a first application of the imaging-mode LIBS. At first, several nonlinear optical microscopy techniques are overviewed. The spatial resolution of the imaging-mode LIBS microscope is discussed basing on the Point-Spread Function (PSF) concept. The primary processes of the Laser-Induced Breakdown (LIB) are overviewed. We consider ionization, breakdown, plasma formation and ablation processes. Water with defined Calcium salt concentration is used as a model of the biological object in the preliminary experiments. The transient LIB spectra are measured and analysed for both nanosecond and femtosecond laser excitation. The experiment on the local Calcium concentration measurements in the peripheral cell wall of the sunflower seedling stem employing nanosecond LIBS shows, that nanosecond laser is not a suitable excitation source for the biological applications. In case of the nanosecond laser the ablation craters have random shape and depth over 20 µm. The analysis of the femtosecond laser ablation craters shows the reproducible circle form. At 3.5 µJ laser pulse energy the diameter of the crater is 4 µm and depth 140 nm for single laser pulse, which results in 1 femtoliter analytical volume. The experimental result of the 2 dimensional and surface sectioning of the bound Calcium concentrations is presented in the work.
Resumo:
This work deals with the optical properties of supported noble metal nanoparticles, which are dominated by the so-called Mie resonance and are strongly dependent on the particles’ morphology. For this reason, characterization and control of the dimension of these systems are desired in order to optimize their applications. Gold and silver nanoparticles have been produced on dielectric supports like quartz glass, sapphire and rutile, by the technique of vapor deposition under ultra-high vacuum conditions. During the preparation, coalescence is observed as an important mechanism of cluster growth. The particles have been studied in situ by optical transmission spectroscopy and ex situ by atomic force microscopy. It is shown that the morphology of the aggregates can be regarded as oblate spheroids. A theoretical treatment of their optical properties, based on the quasistatic approximation, and its combination with results obtained by atomic force microscopy give a detailed characterization of the nanoparticles. This method has been compared with transmission electron microscopy and the results are in excellent agreement. Tailoring of the clusters’ dimensions by irradiation with nanosecond-pulsed laser light has been investigated. Selected particles are heated within the ensemble by excitation of the Mie resonance under irradiation with a tunable laser source. Laser-induced coalescence prevents strongly tailoring of the particle size. Nevertheless, control of the particle shape is possible. Laser-tailored ensembles have been tested as substrates for surface-enhanced Raman spectroscopy (SERS), leading to an improvement of the results. Moreover, they constitute reproducible, robust and tunable SERS-substrates with a high potential for specific applications, in the present case focused on environmental protection. Thereby, these SERS-substrates are ideally suited for routine measurements.
Resumo:
The first direct observation of a hyperfine splitting in the optical regime is reported. The wavelength of the M1 transition between the F = 4 and F = 5 hyperfine levels of the ground state of hydrogenlike ^209 Bi^82+ was measured to be \lamda_0 = 243.87(4) nm by detection of laser induced fluorescence at the heavy-ion storage ring ESR at GSI. In addition, the lifetime of the laser excited F = 5 sublevel was determined to be \tau_0 = 0.351(16) ms. The method can be applied to a number of other nuclei and should allow a novel test of QED corrections in the previously unexplored combination of strong magnetic and electric fields in highly charged ions.
Resumo:
We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na_n ^+ have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na_2 and, observed for the first time, neutral trimer Na_3 photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.
Resumo:
The real-time dynamics of multiphoton ionization and fragmentation of molecules Na_2 and Na_3 has been studied in molecular beam experiments employing ion and electron spectroscopy together with femtosecond pump-probe techniques. Experiments with Na_2 and Na_3 reveal unexpected features of the dynamics of the absorption of several photons as seen in the one- and three-dimensional vibrational wave packet motion in different potential surfaces and in high laser fields: In Na_2 a second major resonance-enhanced multiphoton ionization (REMPI) process is observed, involving the excitation of two electrons and subsequent electronic autoionization. The possibility of controlling a reaction by controlling the duration of propagation of a wave packet on an electronically-excited surface is demonstrated. In high laser fields, the contributions from direct photoionization and from the second REMPI process to the total ion yield change, due to different populations in the electronic states participating in the multiphoton ionization (MPI) processes. In addition, a vibrational wave packet motion in the electronic ground state is induced through stimulated emission pumping by the pump laser. The 4^1 \summe^+_g shelf state of Na_2 is given as an example for performing frequency spectroscopy of highlying electronic states in the time domain. Pure wave packet effects, such as the spreading and the revival of a vibrational wave packet, are investigated. The three-dimensional wave packet motion in the Na_3 reflects the normal modes in the X and B states, and shows in addition the pseudorotational motion in the B state in real time.
Resumo:
Femtosecond pump/probe multiphoton ionization experiments on Na_2 molecules are performed. The dependence of the total Na^+_2 ion signal on the delay time and the intensity of the femtosecond laser pulses is studied in detail. It is observed that molecular vibrational wavepacket motion in different electronic states dominates the time dependence of the ion signal. For higher laser intensities the relative contributions from the A ^1 \summe^+_u and the 2 ^1 \produkt__g states change dramatically, indicating the increasing importance of a two-electron versus a one-electron process. For even stronger fields (10 ^12 W/ cm²) a vibrational wavepacket in the electronic ground state X ^1 \summe^+_g is formed and its dynamics is also observed in the transient Na^+_2 signal. Time-dependent quantum calculations are presented. The theoretical results agree well with the experiment.
Resumo:
The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.
Resumo:
Ultrafast laser pulses have become an integral part of the toolbox of countless laboratories doing physics, chemistry, and biological research. The work presented here is motivated by a section in the ever-growing, interdisciplinary research towards understanding the fundamental workings of light-matter interactions. Specifically, attosecond pulses can be useful tools to obtain the desired insight. However access to, and the utility of, such pulses is dependent on the generation of intense, few-cycle, carrier-envelope-phase stabilized laser pulses. The presented work can be thought of as a sort of roadmap towards the latter. From the oscillator which provides the broadband seed to amplification methods, the integral pieces necessary for the generation of attosecond pulses are discussed. A range of topics from the fundamentals to design challenges is presented, outfitting the way towards the practical implementation of an intense few-cycle carrier-envelope-phase stabilized laser source.
Resumo:
A Ramsey-type interferometer is suggested, employing a cold trapped ion and two time-delayed offresonant femtosecond laser pulses. The laser light couples to the molecular polarization anisotropy, inducing rotational wavepacket dynamics. An interferogram is obtained from the delay dependent populations of the final field-free rotational states. Current experimental capabilities for cooling and preparation of the initial state are found to yield an interferogram visibility of more than 80%. The interferograms can be used to determine the polarizability anisotropy with an accuracy of about ±2%, respectively ±5%, provided the uncertainty in the initial populations and measurement errors are confined to within the same limits.