13 resultados para integrated pest
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Agriculture in the Mojanda Watershed is facing rainfall reductions caused by climate change. Reductions of water availability in the Watershed are also due to constant extension of the agricultural activities into the páramo ecosystem above 3000m a.s.l., with this ecosystem having immanently important functions in the local water balance. The application of pesticides threatens the quality of water and with less precipitation contaminations will further concentrate in the outflow. To analyze problems associated with agricultural practices in the area a questionnaire about agricultural practices (28) was conducted and fields (20) were surveyed for pests and diseases with a focus on potatoes (Solanum tuberosum L.), tree tomatoes (Solanum betaceum Cav.) and peas (Pisum sativum L.). Potatoes were infected to a low degree with Phytophthora infestans and according to the farmers the Andean potato weevil (Premnotrypes spec.) caused biggest losses. To combat the weevil the soils are disinfected with toxic Carbofuran (WHO Class 1B). Tree tomatoes showed symptoms of various fungal diseases. Most important was Fusarium solani causing the branches to rot and Anthracnosis (Colletotrichum gloeosporioides) causing the fruits to rot. Fungicide applications were correspondingly high. Peas were only minorly affected by Ascochyta blight (Mycosphaerella pinodes) and a root rot. Overall 19 active ingredients were applied of which fungicide Mancozeb (WHO class table 5) and insecticide Carbofuran (WHO Class 1B) were applied the most. Approved IPM methods are advised to reduce pesticide use. For tree tomatoes regular cutting of branches infected with F. solani and regular collection and disposal of infected fruits with Anthracnosis are advised. For potatoes plastic barriers around the fields prevent the Andean potato weevil from laying eggs thus reducing infestation with the larvae in the tubers. Local bioinsecticide “Biol” seems effective and without harm to the environment, although not used by many farmers. Organic fertilization promises to restore decreasing soil fertility, water holding capacity and reduce erosion. The here presented alternatives and strategies to reduce pesticide use pose an opportunity to preserve the water resources of the region.
Resumo:
As we initiate entomological research on potato (Solanum tuberosum L.) in Uganda, there is need to understand farmers’ knowledge of existing insect pest problems and their management practices. Such information is important for designing a suitable intervention and successful integrated pest management (IPM) strategy. A farm household survey using a structured questionnaire was conducted among 204 potato farmers in six districts of Uganda (i.e., Kabale, Kisoro, Mbale, Kapchorwa, Mubende, and Kyegegwa) during August and September 2013. Diseases, insect pests, price fluctuations, and low market prices were the four highest ranked constraints in potato production, in order of decreasing importance. Cutworms (Agrotis spp.), aphids (Myzus persicae (Sulzer)), and potato tuber moth (Phthorimaea operculella (Zeller)) were the three most severe insect pests. Ants (Dorylis orantalis Westwood), whiteflies (Bemisia tabaci (Gennadius)), and leafminer flies (Liriomyza huidobrensis (Blanchard)) were pests of moderate importance. Major yield losses are predominantly due to late blight (Phytophthora infestans (Mont.) de Bary) and reached 100% without chemical control in the districts of Kabale, Kisoro, Mbale, and Kapchorwa. On average, farmers had little to moderate knowledge about pest characteristics. The predominant control methods were use of fungicides (72% of respondents) and insecticides (62% of respondents). On average, only 5% of the 204 farmers knew about insect pests and their natural enemies. This lack of knowledge calls for training of both farmers and extension workers in insect pest identification, their biology, and control. Empowering farmers with knowledge about insect pests is essential for the reduction of pesticide misuse and uptake of more environmentally friendly approaches like IPM. Field surveys would need follow-up in order to assess the actual field infestation rates and intensities of each insect pest and compare the results with the responses received from farmers.
Resumo:
Die Arbeit stellt einen strukturellen Rahmen zur Einordnung sowohl bisheriger als auch zukünftiger organisationstheoretischer und DV-technologischer Entwicklungen zur Umsetzung eines Computer Integrated Business (CIB) bereit. Dazu analysiert sie bisherige Ansätze und zukünftige Perspektiven eines CIB mittels theoretischer und empirischer Bearbeitungsverfahren. Die Notwendigkeit zur Unternehmensintegration ergibt sich aus dem betriebswirtschaftlichen Konzept der Arbeitsteilung, über die das Phänomen der Economies of Scale erschlossen wird. Die Arbeitsteilung wurde zum Gestaltungskonzept in den Fabriken der industriellen Revolution. Komplexe Arbeitsgänge wurden in spezialisierte Teilaufgaben zerlegt und nach Möglichkeit auf maschinelle bzw. technologische Potentiale übertragen. Die Zielsetzung lag zunächst in der Automatisierung des Materialflusses, während der Informationsfluss noch lange Zeit im Hintergrund stand. Mittlerweile ermöglichen leistungsfähige DV-Systeme auch die Automatisierung des Informationsflusses und damit die DV-gestützte Integration des Unternehmens, die den Kern des CIB-Konzeptes darstellt. Das CIB-Konzept wurde Ende der achtziger Jahre am Fraunhofer-Institut für Arbeitswirtschaft und Organisation als Erweiterung des Computer Integrated Manufacturing (CIM) für Industrieunternehmen von Bullinger geprägt, jedoch in seiner Zielsetzung als Modell zur Totalintegration von Unternehmen danach nicht maßgeblich weiterentwickelt. Vielmehr wurden in der Folgezeit überwiegend Teilintegrationslösungen diskutiert, wie z. B. Konzepte zur Integration der Fertigung oder zur Unterstützung der Teamarbeit. Der Aspekt der umfassenden, unternehmensinternen Integration rückte Mitte der neunziger Jahre durch die an Popularität gewinnende Internet-Technologie an den Rand der wissenschaftlichen Diskussion. Erst nach dem Zusammenbruch der ersten Internet-Euphorie und der anschließenden wirtschaftlichen Rezession gewann das Integrationsthema am Anfang dieses Jahrzehnts mit Hinblick auf dadurch mögliche Kostenvorteile wieder an Bedeutung. Die Diskussion wurde jedoch mit starkem technologischem Fokus geführt (z. B. zum Thema Enterprise Application Integration) und Aspekte der Unternehmensorganisation wurden bestenfalls grob, jedoch nicht im Detail diskutiert. Die vorliegende Arbeit bearbeitet die CIB-Thematik umfassend sowohl aus unternehmensorganisatorischer als auch DV-technologischer Sicht und bewegt sich deshalb interdisziplinär zwischen den Wissenschaftsbereichen der Betriebswirtschaft und der Informatik. Die Untersuchung wird vor dem Hintergrund einer sozio-technologischen Unternehmensorganisation geführt, in der DV-technologische Potentiale neben humanen Potentialen zur Erreichung der Unternehmensziele eingesetzt werden. DV-technologische Potentiale übernehmen darin einerseits Integrationsaufgaben und werden andererseits aber selbst zum Integrationsziel. Die Herausforderung für die Unternehmensführung besteht in der Konfiguration des CIB und im Finden eines Gleichgewichts zwischen Arbeitsteilung und Integration auf der einen sowie humanen und technologischen Potentialen auf der anderen Seite, letztendlich aber auch in der Automatisierung der Integration. Die Automatisierung der Integration stellt mit Hinblick auf die durch Umweltveränderungen bedingte Konfigurationsanpassung ein bisher konzeptionell nur ansatzweise gelöstes Problem dar. Der technologischen Integrationsarchitektur sowie den verwendeten Methoden des Prozessdesigns und der Software-Entwicklung kommt bei der Lösung dieses Problems eine hohe Bedeutung zu. Über sie bestimmt sich die Anpassungsfähigkeit und geschwindigkeit des CIB. Es kann vermutet werden, dass eine Lösung jedoch erst erreicht wird, wenn sich die Unternehmensorganisation vom Konzept der zentralen Koordination abwendet und stattdessen an dezentralen Koordinationsmechanismen unter Verwendung ultrastabiler Anpassungsprogramme orientiert, wie sie z. B. in der Biologie bei Insektenkulturen untersucht wurden.
Resumo:
Scanning Probe Microscopy (SPM) has become of fundamental importance for research in area of micro and nano-technology. The continuous progress in these fields requires ultra sensitive measurements at high speed. The imaging speed limitation of the conventional Tapping Mode SPM is due to the actuation time constant of piezotube feedback loop that keeps the tapping amplitude constant. In order to avoid this limit a deflection sensor and an actuator have to be integrated into the cantilever. In this work has been demonstrated the possibility of realisation of piezoresistive cantilever with an embedded actuator. Piezoresistive detection provides a good alternative to the usual optical laser beam deflection technique. In frames of this thesis has been investigated and modelled the piezoresistive effect in bulk silicon (3D case) for both n- and p-type silicon. Moving towards ultra-sensitive measurements it is necessary to realize ultra-thin piezoresistors, which are well localized to the surface, where the stress magnitude is maximal. New physical effects such as quantum confinement which arise due to the scaling of the piezoresistor thickness was taken into account in order to model the piezoresistive effect and its modification in case of ultra-thin piezoresistor (2D case). The two-dimension character of the electron gas in n-type piezoresistors lead up to decreasing of the piezoresistive coefficients with increasing the degree of electron localisation. Moreover for p-type piezoresistors the predicted values of the piezoresistive coefficients are higher in case of localised holes. Additionally, to the integration of the piezoresistive sensor, actuator integrated into the cantilever is considered as fundamental for realisation of fast SPM imaging. Actuation of the beam is achieved thermally by relying on differences in the coefficients of thermal expansion between aluminum and silicon. In addition the aluminum layer forms the heating micro-resistor, which is able to accept heating impulses with frequency up to one megahertz. Such direct oscillating thermally driven bimorph actuator was studied also with respect to the bimorph actuator efficiency. Higher eigenmodes of the cantilever are used in order to increase the operating frequencies. As a result the scanning speed has been increased due to the decreasing of the actuation time constant. The fundamental limits to force sensitivity that are imposed by piezoresistive deflection sensing technique have been discussed. For imaging in ambient conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. Additional noise sources, connected with the piezoresistive detection are negligible.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.
Resumo:
Due to growing land scarcity and lack of nutrient inputs, African farmers switched from shifting cultivation to continuous cropping and extended crop area by bringing fragile lands such as river banks and hill slopes into production. This accelerated soil fertility decline caused by erosion, harvesting and insufficient nutrient replenishment. We explored the feasibility to reduce nutrient depletion by increasing nutrient utilization efficiencies, while diversifying and increasing food production through the development of integrated aquaculture – agriculture (IAA). Considering the climatic conditions prevailing in Kenyan highlands, aquaculture production scenarios were ideotyped per agro-ecological zone. These aquaculture production scenarios were integrated into existing NUTrient MONitoring (NUTMON) farm survey data for the area. The nutrient balances and flows of the resulting IAA-systems were compared to present land use. The effects of IAA development on nutrient depletion and total food production were evaluated. With the development of IAA systems, nutrient depletion rates dropped by 23–35%, agricultural production increased by 2–26% and overall farm food production increased by 22–70%. The study demonstrates that from a bio-physical point of view, the development of IAA-systems in Africa is technically possible and could raise soil fertility and total farm production. Further studies that evaluate the economic feasibility and impacts on the livelihood of farming households are recommended.
Resumo:
Faisalabad city is surrounded by agricultural lands, where farmers are growing vegetables, grain crops, and fodder for auto-consumption and local marketing. To study the socioeconomic impact and resource use in these urban and peri-urban agricultural production (UPA) systems, a baseline survey was conducted during 2009–2010. A total of 140 households were selected using a stratified sampling method and interviewed with a structured questionnaire. The results revealed that 96 % of the households rely on agriculture as their main occupation. Thirty percent of the households were owners of the land and the rest cultivated either rented or sharecropped land. Most of the families (70 %) were headed by a member with primary education, and only 10 % of the household head had a secondary school certificate. Irrigationwater was obtained from waste water (37 %), canals (27 %), and mixed alternative sources (36 %). A total of 35 species were cultivated in the UPA systems of which were 65% vegetables, 15% grain and fodder crops, and 5% medicinal plants. Fifty-nine percent of the households cultivated wheat, mostly for auto-consumption. The 51 % of the respondents grew cauliflower (Brassica oleracea L.) and gourds (Cucurbitaceae) in the winter and summer seasons, respectively. Group marketing was uncommon and most of the farmers sold their produce at the farm gate (45 %) and on local markets (43 %). Seeds and fertilizers were available from commission agents and dealers on a credit basis with the obligation to pay by harvested produce. A major problem reported by the UPA farmers of Faisalabad was the scarcity of high quality irrigation water, especially during the hot dry summer months, in addition to lacking adequate quantities of mineral fertilizers and other inputs during sowing time. Half of the respondents estimated their daily income to be less than 1.25 US$ and spent almost half of it on food. Monthly average household income and expenses were 334 and 237 US$, respectively.
Resumo:
This paper examines the strategies and techniques researched and implemented by the International Union for Conservation of Nature (IUCN) in villages in the vicinity of Doi Mae Salong in Chiang Rai Province, Thailand. The strategies revolve around the paradigm linking poverty alleviation, conservation and landscape restoration. IUCN and its partners specifically researched and implemented schemes directed toward diversification of the household economy through alternative and sustainable intensified agriculture techniques based on balancing conservation and livelihood objectives. The projects aimed to reduce poverty and build the resilience of smallholders through decentralised governance arrangements including land use planning schemes and stakeholder negotiation. Considering the agro-ecological system on a catchment-wide scale enhances the conceptual understanding of each component, collectively forming a landscape matrix with requisite benefits for biodiversity, smallholder livelihoods and ecosystem services. In particular, the role of enhancing ecosystem services and functions in building socio-ecological resilience to vulnerabilities such as climate and economic variability is paramount in the process.
Resumo:
Ein Drittel des weltweiten gesamten Energiebedarfs wird durch Gebäude verbraucht. Um diesen Energiebedarf teilweise zu decken, den erheblichen Energieverbrauch zu reduzieren und weiterhin andere Gebäudefunktionen beizubehalten, ist Gebäudeintegrierte Photovoltaik (BIPV) eine der am besten geeigneten Lösungen für die Gebäudenanwendung. Im Bezug auf eine Vielzahl von Gestalltungsmöglichkeiten, sind die Randbedingungen der BIPV-Anwendungen eindeutig anders im Vergleich zu Standard-PV-Anwendungen, insbesondere bezüglich der Betriebstemperatur. Bisher gab es nicht viele Informationen zu den relevanten thermischen Auswirkungen auf die entsprechenden elektrischen Eigenschaften zusammen mit thermischen und mechanischen relevanten Gebäudenfunktionen. Die meisten Hersteller übernehmen diese Eigenschaften von entsprechenden PV-Modulen und konventionellen Bauprodukten Normen, die zur ungenauen System- und Gebäudeplanungen führen. Deshalb ist die Untersuchung des thermischen Einflusses auf elektrische, thermische sowie mechanische Eigenschaften das Hauptziel der vorliegenden Arbeit. Zunächst wird das Temperatur-Model mit dem Power-Balance-Konzept erstellt. Unter Berücksichtigung der variablen Installationsmöglichkeiten und Konfigurationen des Moduls wird das Model auf Basis dynamischer und stationär Eigenschaften entwickelt. Im Hinblick auf die dynamische Simulation können der Energieertrag und Leistung zusammen mit der thermischen Gebäudesimulation in Echtzeit simuliert werden. Für stationäre Simulationen können die relevanten Gebäudefunktionen von BIPV-Modulen sowohl im Sommer als auch im Winter simuliert werden. Basierend auf unterschiedlichen thermischen und mechanischen Last-Szenarien wurde darüber hinaus das mechanische Model zusammen mit Variationen von Belastungsdauer, Montagesystem und Verkapselungsmaterialien entwickelt. Um die Temperatur- und Mechanik-Modelle zu validieren, wurden die verschiedenen Prüfeinrichtungen zusammen mit neuen Testmethoden entwickelt. Bei Verwendung der Prüfanlage „PV variable mounting system“ und „mechanical testing equipment“ werden zudem die verschiedenen Szenarien von Montagesystemen, Modul-Konfigurationen und mechanischen Belastungen emuliert. Mit der neuen Testmethode „back-bias current concept“ können zum einen die solare Einstrahlung und bestimmte Betriebstemperaturen eingestellt werden. Darüber hinaus wurden mit den eingangs erwähnten validierten Modellen das jeweilige elektrische, thermische und mechanische Verhalten auf andere Konfigurationen bewertet. Zum Abschluss wird die Anwendung von Software-Tools bei PV-Herstellern im Hinblick auf die entsprechenden Modellentwicklungen thematisiert.
Resumo:
In the pastoral production systems, mobility remains the main technique used to meet livestock’s fodder requirements. Currently, with growing challenges on the pastoral production systems, there is urgent need for an in-depth understanding of how pastoralists continue to manage their grazing resources and how they determine their mobility strategies. This study examined the Borana pastoralists’ regulation of access to grazing resources, mobility practices and cattle reproductive performances in three pastoral zones of Borana region of southern Ethiopia. The central objective of the study was to contribute to the understanding of pastoral land use strategies at a scale relevant to their management. The study applied a multi-scalar methodological approach that allowed zooming in from communal to individual herd level. Through participatory mapping that applied Google Earth image print out as visual aid, the study revealed that the Borana pastoralists conceptualized their grazing areas as distinctive grazing units with names, borders, and specific characteristics. This knowledge enables the herders to communicate the condition of grazing resources among themselves in a precise way which is important in management of livestock mobility. Analysis of grazing area use from the participatory maps showed that the Borana pastoralists apportion their grazing areas into categories that are accessed at different times of the year (temporal use areas). This re-organization is an attempt by the community to cope with the prevailing constraints which results in fodder shortages especially during the dry periods. The re-organization represents a shift in resource use system, as the previous mobility practice across the ecologically varied zones of the rangelands became severely restricted. Grazing itineraries of 91 cattle herds for over 16 months obtained using the seasonal calendar interviews indicated that in the areas with the severest mobility constraints, the herders spent most of their time in the year round use areas that are within close proximity to the settlements. A significant change in mobility strategy was the disallowing of foora practice by the communities in Dirre and Malbe zones in order to reduce competition. With the reduction in mobility practices, there is a general decline in cattle reproductive parameters with the areas experiencing the severest constraints showing the least favourable reproductive performances. The study concludes that the multi-scalar methodology was well suited to zoom into pastoral grazing management practices from communal to individual herd levels. Also the loss of mobility in the Borana pastoral system affects fulfilment of livestock feed requirements thus resulting in reduced reproductive performances and herd growth potentials. While reversal of the conditions of the situations in the Borana rangelands is practically unfeasible, the findings from this research underscore the need to protect the remaining pastoral lands since the pastoral production system remains the most important livelihood option for the majority of the Borana people. In this regards the study emphasises the need to adopt and domesticate regional and international policy frameworks such as that proposed by the African Union in 2010.
Resumo:
Rising global energy needs and limited fossil fuel reserves have led to increased use of renewable energies. In Germany, this has entailed massive exploitation of agricultural biomass for biogas generation, associated with unsustainable farming practices. Organic agriculture not only reduces negative environmental impacts, organic farmers were also prime movers in anaerobic digestion (AD) in Germany. This study’s aim was to identify the structure, development, and characteristics of biogas production associated with organic farming systems in order to estimate further development, as well as energetic and associated agronomic potentials. Surveys were conducted among organic farms with AD technology. 144 biogas plants could be included in the analysis. Total installed electrical capacity was 30.8 MWel, accounting for only 0.8% of the total installed electrical capacity in the German biogas sector. Recently, larger plant types (>250 kWel) with increased use of (also purchased) energy crops have emerged. Farmers noticed increases in yields (22% on average) and quality of cash crops in arable farming through integrated biogas production. In conclusion, although the share of AD in organic farming is relatively small it can provide various complementary socio-ecological benefits such as the enhancement of food output through digestate fertilization without additional need for land, while simultaneously reducing greenhouse gas emissions from livestock manures and soils. However, to achieve this eco-functional intensification, AD systems and their management have to be well adapted to farm size and production focus and based primarily on residue biomass.
Resumo:
The challenge of reducing carbon emission and achieving emission target until 2050, has become a key development strategy of energy distribution for each country. The automotive industries, as the important portion of implementing energy requirements, are making some related researches to meet energy requirements and customer requirements. For modern energy requirements, it should be clean, green and renewable. For customer requirements, it should be economic, reliable and long life time. Regarding increasing requirements on the market and enlarged customer quantity, EVs and PHEV are more and more important for automotive manufactures. Normally for EVs and PHEV there are two important key parts, which are battery package and power electronics composing of critical components. A rechargeable battery is a quite important element for achieving cost competitiveness, which is mainly used to story energy and provide continue energy to drive an electric motor. In order to recharge battery and drive the electric motor, power electronics group is an essential bridge to convert different energy types for both of them. In modern power electronics there are many different topologies such as non-isolated and isolated power converters which can be used to implement for charging battery. One of most used converter topology is multiphase interleaved power converter, pri- marily due to its prominent advantages, which is frequently employed to obtain optimal dynamic response, high effciency and compact converter size. Concerning its usage, many detailed investigations regarding topology, control strategy and devices have been done. In this thesis, the core research is to investigate some branched contents in term of issues analysis and optimization approaches of building magnetic component. This work starts with an introduction of reasons of developing EVs and PEHV and an overview of different possible topologies regarding specific application requirements. Because of less components, high reliability, high effciency and also no special safety requirement, non-isolated multiphase interleaved converter is selected as the basic research topology of founded W-charge project for investigating its advantages and potential branches on using optimized magnetic components. Following, all those proposed aspects and approaches are investigated and analyzed in details in order to verify constrains and advantages through using integrated coupled inductors. Furthermore, digital controller concept and a novel tapped-inductor topology is proposed for multiphase power converter and electric vehicle application.