2 resultados para illumination variations
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Der Wechsel von Tag und Nacht erzeugt einen regelmäßigen Rhythmus von verschiedenen Umweltreizen, allen voran Licht und Temperatur. Fast jedes bis zum heutigen Tage untersuchte Lebewesen besitzt einen endogenen Mechanismus zur Zeitwahrnehmung, und diese "innere Uhr" befähigt Lebewesen dazu, sich vorausschauend an rhythmische Umwelt-Änderungen anzupassen. Circadiane Rhythmen bestehen auch ohne jegliche äußere Reize und basieren auf einem molekularen Rückkopplungs-Mechanismus, der Rhythmen in Genexpression und Proteinkonzentration von etwa 24 Stunden erzeugt. Obwohl sich die grundsätzlichen Mechanismen und Komponenten dieses molekularen Uhrwerks in allen Insekten ähneln, zeigte sich jedoch immer mehr, dass es im Detail doch wesentliche Unterschiede zwischen verschiedenen Insektengruppen gibt. Während das molekulare Uhrwerk der Fruchtfliege Drosophila melanogaster inzwischen sehr gut untersucht ist, fehlen bei den meisten Insektengruppen immernoch eingehende Untersuchungen. Fast nichts ist über die molekulare Basis von circadianen Rhythmen bei der Schabe Rhyparobia maderae bekannt, obwohl diese Art bereits seit Langem als Modellorganismus in der Chronobiologie dient. Um mit der Forschung am molekularen, circadianen System von R. maderae zu beginnen, wurde die Struktur und das Expressionsprofil der core feedback loop Gene per, tim1 und cry2 analysiert. Mittels degenerierten Primern und RACE konnte das vollständige offene Leseraster (OLR) von rmPer und rmCry2, und ein Teil des rmTim1 OLR kloniert werden. Eine phylogenetische Analyse gruppierte rmPER und rmCRY2 gemeinsam mit den Orthologa hemimetaboler Insekten. Viele bei D. melanogaster funktionell charakterisierte Domänen sind bei diesen Proteinen konserviert, was auf eine ähnliche Funktion in der inneren Uhr von R. maderae hinweist. Mittels quantitativer PCR konnte gezeigt werden, dass die mRNA von rmPer, rmTim1 und rmCry2 in verschiedenen Lichtregimen in der gleichen Phasenlage Tageszeit-abhängig schwankt. Die Phasenlage stellte sich bei unterschiedlichen Photoperioden jeweils relativ zum Beginn der Skotophase ein, mit Maxima in der ersten Hälfte der Nacht. Auch im Dauerdunkel zeigen sich Rhythmen in der rmTim1 und rmCry2 Expression. Die Amplitude der rmPer Expressionsrhythmen war jedoch so gering, dass keine signifikanten Unterschiede zwischen den einzelnen Zeitgeberzeiten (ZT) festgestellt werden konnten. Mittels Laufrad-Assays wurde untersucht wie Kurz- und Langtag Lichtregime die Verhaltensrhythmen beeinflussen. Es konnten nur Unterschiede in der Periodenlänge unter freilaufenden Bedingungen festgestellt werden, wenn höhere Lichtintensitäten (1000lx) zur Synchronisation (entrainment) genutzt wurden. Die Periode des freilaufenden Rhythmus war bei Tieren aus dem Kurztag länger. Die photoperiodische Plastizität zeigte sich also auch auf Verhaltensebene, obwohl höhere Lichtintensitäten notwendig waren um einen Effekt zu beobachten. Basierend auf den Sequenzen der zuvor klonierten OLR wurden gegen rmPER, rmTIM1 und rmCRY2 gerichtete Antikörper hergestellt. Die Antikörper gegen rmPER und rmTIM1 erkannten in western blots sehr wahrscheinlich spezifisch das jeweilige Protein. Zeitreihen von Gehirngewebe-Homogenisaten zeigten keinen offensichtlichen circadianen Rhythmus in der Proteinkonzentration, wahrscheinlich auf Grund einer Oszillation mit niedriger Amplitude. In Immunhistochemischen Färbungen konnte nur mit dem gegen rmPER gerichteten Antikörper aus Kaninchen ein Signal beobachtet werden. Beinahe jede Zelle des Zentralnervensystems war rmPER-immunreaktiv im Zellkern. Es konnten keine Unterschiede zwischen den untersuchten ZTs festgestellt werden, ähnlich wie bei den western blot Zeitreihen. In dieser Studie konnten erstmals molekulare Daten der circadianen Uhr von R. maderae erfasst und dargestellt werden. Die Uhrgene per, tim1 und cry2 werden in dieser Schabenart exprimiert und ihre Domänenstruktur sowie das circadiane Expressionsmuster ähneln dem hypothetischen ursprünglichen Insektenuhrwerk, welches der circadianen Uhr von Vertebraten nahesteht. Das molekulare Uhrwerk von R. maderae kann sich an unterschiedliche Photoperioden anpassen, und diese Anpassungen manifestieren sich im Expressionsprofil der untersuchten Uhrgene ebenso wie im Verhalten.
Resumo:
The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.