4 resultados para gut content

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landwirtschaft spielt eine zentrale Rolle im Erdsystem. Sie trägt durch die Emission von CO2, CH4 und N2O zum Treibhauseffekt bei, kann Bodendegradation und Eutrophierung verursachen, regionale Wasserkreisläufe verändern und wird außerdem stark vom Klimawandel betroffen sein. Da all diese Prozesse durch die zugrunde liegenden Nährstoff- und Wasserflüsse eng miteinander verknüpft sind, sollten sie in einem konsistenten Modellansatz betrachtet werden. Dennoch haben Datenmangel und ungenügendes Prozessverständnis dies bis vor kurzem auf der globalen Skala verhindert. In dieser Arbeit wird die erste Version eines solchen konsistenten globalen Modellansatzes präsentiert, wobei der Schwerpunkt auf der Simulation landwirtschaftlicher Erträge und den resultierenden N2O-Emissionen liegt. Der Grund für diese Schwerpunktsetzung liegt darin, dass die korrekte Abbildung des Pflanzenwachstums eine essentielle Voraussetzung für die Simulation aller anderen Prozesse ist. Des weiteren sind aktuelle und potentielle landwirtschaftliche Erträge wichtige treibende Kräfte für Landnutzungsänderungen und werden stark vom Klimawandel betroffen sein. Den zweiten Schwerpunkt bildet die Abschätzung landwirtschaftlicher N2O-Emissionen, da bislang kein prozessbasiertes N2O-Modell auf der globalen Skala eingesetzt wurde. Als Grundlage für die globale Modellierung wurde das bestehende Agrarökosystemmodell Daycent gewählt. Neben der Schaffung der Simulationsumgebung wurden zunächst die benötigten globalen Datensätze für Bodenparameter, Klima und landwirtschaftliche Bewirtschaftung zusammengestellt. Da für Pflanzzeitpunkte bislang keine globale Datenbasis zur Verfügung steht, und diese sich mit dem Klimawandel ändern werden, wurde eine Routine zur Berechnung von Pflanzzeitpunkten entwickelt. Die Ergebnisse zeigen eine gute Übereinstimmung mit Anbaukalendern der FAO, die für einige Feldfrüchte und Länder verfügbar sind. Danach wurde das Daycent-Modell für die Ertragsberechnung von Weizen, Reis, Mais, Soja, Hirse, Hülsenfrüchten, Kartoffel, Cassava und Baumwolle parametrisiert und kalibriert. Die Simulationsergebnisse zeigen, dass Daycent die wichtigsten Klima-, Boden- und Bewirtschaftungseffekte auf die Ertragsbildung korrekt abbildet. Berechnete Länderdurchschnitte stimmen gut mit Daten der FAO überein (R2 = 0.66 für Weizen, Reis und Mais; R2 = 0.32 für Soja), und räumliche Ertragsmuster entsprechen weitgehend der beobachteten Verteilung von Feldfrüchten und subnationalen Statistiken. Vor der Modellierung landwirtschaftlicher N2O-Emissionen mit dem Daycent-Modell stand eine statistische Analyse von N2O-und NO-Emissionsmessungen aus natürlichen und landwirtschaftlichen Ökosystemen. Die als signifikant identifizierten Parameter für N2O (Düngemenge, Bodenkohlenstoffgehalt, Boden-pH, Textur, Feldfrucht, Düngersorte) und NO (Düngemenge, Bodenstickstoffgehalt, Klima) entsprechen weitgehend den Ergebnissen einer früheren Analyse. Für Emissionen aus Böden unter natürlicher Vegetation, für die es bislang keine solche statistische Untersuchung gab, haben Bodenkohlenstoffgehalt, Boden-pH, Lagerungsdichte, Drainierung und Vegetationstyp einen signifikanten Einfluss auf die N2O-Emissionen, während NO-Emissionen signifikant von Bodenkohlenstoffgehalt und Vegetationstyp abhängen. Basierend auf den daraus entwickelten statistischen Modellen betragen die globalen Emissionen aus Ackerböden 3.3 Tg N/y für N2O, und 1.4 Tg N/y für NO. Solche statistischen Modelle sind nützlich, um Abschätzungen und Unsicherheitsbereiche von N2O- und NO-Emissionen basierend auf einer Vielzahl von Messungen zu berechnen. Die Dynamik des Bodenstickstoffs, insbesondere beeinflusst durch Pflanzenwachstum, Klimawandel und Landnutzungsänderung, kann allerdings nur durch die Anwendung von prozessorientierten Modellen berücksichtigt werden. Zur Modellierung von N2O-Emissionen mit dem Daycent-Modell wurde zunächst dessen Spurengasmodul durch eine detailliertere Berechnung von Nitrifikation und Denitrifikation und die Berücksichtigung von Frost-Auftau-Emissionen weiterentwickelt. Diese überarbeitete Modellversion wurde dann an N2O-Emissionsmessungen unter verschiedenen Klimaten und Feldfrüchten getestet. Sowohl die Dynamik als auch die Gesamtsummen der N2O-Emissionen werden befriedigend abgebildet, wobei die Modelleffizienz für monatliche Mittelwerte zwischen 0.1 und 0.66 für die meisten Standorte liegt. Basierend auf der überarbeiteten Modellversion wurden die N2O-Emissionen für die zuvor parametrisierten Feldfrüchte berechnet. Emissionsraten und feldfruchtspezifische Unterschiede stimmen weitgehend mit Literaturangaben überein. Düngemittelinduzierte Emissionen, die momentan vom IPCC mit 1.25 +/- 1% der eingesetzten Düngemenge abgeschätzt werden, reichen von 0.77% (Reis) bis 2.76% (Mais). Die Summe der berechneten Emissionen aus landwirtschaftlichen Böden beträgt für die Mitte der 1990er Jahre 2.1 Tg N2O-N/y, was mit den Abschätzungen aus anderen Studien übereinstimmt.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research projects such as PADLR and SWAP have developed tools like Edutella or Bibster, which are targeted at establishing peer-to-peer knowledge management (P2PKM) systems. In such a system, it is necessary to obtain provide brief semantic descriptions of peers, so that routing algorithms or matchmaking processes can make decisions about which communities peers should belong to, or to which peers a given query should be forwarded. This paper proposes the use of graph clustering techniques on knowledge bases for that purpose. Using this clustering, we can show that our strategy requires up to 58% fewer queries than the baselines to yield full recall in a bibliographic P2PKM scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zusammenfassung: Ziel der Arbeit war ein Methodenvergleich zur Beurteilung der Milchqualität unterschiedlicher Herkünfte. Am Beispiel von Milchproben aus unterschiedlicher Fütterung sowie an Milchproben von enthornten bzw. horntragenden Kühen wurde geprüft, welche der angewendeten Methoden geeignet ist, die Vergleichsproben zu unterscheiden (Differenzierungsfähigkeit der Methoden) und inwieweit eine Qualitätsbeurteilung möglich ist (hinsichtlich Milchleistung, Fett-, Eiweiß-, Lactose- (=F,E,L), Harnstoff-gehalt und Zellzahl (=SCC), Säuerungseigenschaften (=SE), Fettsäuremuster (=FS-Muster), Protein- und Metabolit-Zusammensetzung (=Pr&M), Fluoreszenz-Anregungs-Spektroskopie-Eigenschaften (=FAS) und Steigbild-Merkmalen). Zusätzlich wurde vorab die Steigbildmethode (=SB-M) für das Produkt Rohmilch standardisiert und charakterisiert, um die Reproduzierbarkei der Ergebnisse sicherzustellen. Die Untersuchungen zur SB-M zeigten, dass es Faktoren gibt, die einen deutlichen Einfluß auf die Bildmerkmals-Ausprägung aufweisen. Dazu gehören laborseitig die Klimabedingungen in der Kammer, die Verdünnungsstufe der Probe, die Standzeiten der Vorverdünnung (Reaktionen mit der Luft, Alterung usw.), und tagesspezifisch auftretende Effekte, deren Ursache unbekannt ist. Probenseitig sind sehr starke tierindividuelle Effekte auf die Bildmerkmals-Ausprägung festzustellen, die unabhängig von Fütterung, Alter, Laktationsstadium und Genetik auftreten, aber auch Fütterungsbedingungen der Kühe lassen sich in der Bildmerkmals-Ausprägung wiederfinden. Die Art der Bildauswertung und die dabei berücksichtigten Bildmerkmale ist von großer Bedeutung für das Ergebnis. Die im Rahmen dieser Arbeit untersuchten 46 Probenpaare (aus den Fütterungsvergleichen (=FV) und zur Thematik der Hörner) konnten in 91% der Fälle korrekt gruppiert werden. Die Unterschiede konnten benannt werden. Drei FV wurden auf drei biologisch-dynamischen Höfen unter Praxis-Bedingungen durchgeführt (on-farm-Experimente). Es wurden jeweils zwei vergleichbare Gruppen à mindestens 11 Kühen gebildet, die im Cross-Over-Design gefüttert wurden, mit Probennahme am 14. und 21. Tag je Periode. Es wurden folgende FV untersucht: A: Wiesenheu vs. Kleegrasheu (=KG-Heu), B: Futterrüben (=FuR) vs. Weizen (Ergänzung zu Luzernegrasheu ad lib.), C: Grassilage vs. Grasheu. Bei Versuch A sind die Futtereffekte am deutlichsten, Gruppeneffekte sind gering. Die Milch der Wiesenheu-Variante hat weniger CLA’s und n3- FS und mehr mittellangkettige FS (MCT-FS), das Pr&M-Muster weist auf „Gewebereifung und Ausdifferenzierung“ vs. bei KG-Heu „Nährstoff-fülle, Wachstum und Substanz-Einlagerung und die SB zeigen fein ausdifferenzierte Bildmerkmale. Bei Versuch B sind die Futtereffekte ähnlich groß wie die Gruppeneffekte. Bei vergleichbarer Milchleistung weist die Milch der FuR-Variante höhere F- und E-Gehalte auf, sie säuert schneller und mehr, das FS-Muster weist auf eine „intensive“ Fütterung mit vermehrt MCT- FS, und die Pr&M-Untersuchungen charakterisieren sie mit „Eisentransport und Fetttröpfchenbildung“ vs. bei Weizen „mehr Abwehr-, Regulations- und Transportfunktion“ /. „mehr Lipidsynthese“. Die SB charakterisieren mit „große, kräftige Formen, verwaschen“ vs. „kleine, ausdifferenzierte Bildmerkmal“ für FuR vs. Weizen. Die FAS charakterisiert sie mit „Saftfutter-typisch“ vs. „Samentypisch“. Versuch C weist die geringsten Futtereffekt auf, und deutliche Gruppen- und Zeiteffekte. Milchleistung und F,E,L-Gehalte zeigen keinen Futtereffekt. Die Milch der Heu-Variante säuert schneller, und sie weist mehr SCT und MCT- FS auf. Pr&M-Untersuchungen wurden nicht durchgeführt. Die SB charakterisieren bei Heumilch mit „fein, zart, durchgestaltet, hell“, bei Silagemilch mit „kräftig, wäßrig-verwaschen, dunkler“. Die FAS kann keine konsistenten Unterschiede ermitteln. Der Horn-Einfluß auf die Milchprobe wurde an 34 Probenpaaren untersucht. Von 11 Höfen wurden je zwei möglichst vergleichbare Gruppen zusammengestellt, die sich nur im Faktor „Horn“ unterscheiden, und im wöchentlichen Abstand drei mal beprobt. F,E,L, SCC und SE der Proben sowie die FAS-Messungen weisen keine konsistenten signifikanten Unterschiede zwischen den Horn-Varianten auf. Pr&M weisen bei den untersuchten Proben (von zwei Höfen) auf Horneffekte hin: bei Eh eine Erhöhung von Immun-Abwehr-Funktionen, sowie einer Abnahme phosphorylierter C3- und C6-Metabolite und Beta-Lactoglobulin. Mit den SB ließen sich für die gewählten Merkmale (S-Größe und g.B.-Intensität) keine Horneffekte feststellen. FS, Pr&M-Muster sowie Harnstoffgehalt und SB (und z.T. Milchleistung) zeigten je FV ähnliche Effekt-Intensitäten für Futter-, Gruppen- und Zeiteffekte, und konnten die Cross-Over-Effekte gut wiedergeben. F- und E-Gehalte konnten neben tierindividuellen Effekten nur in FV B auch Futtereffekte aufzeigen. In FV C zeigten die SE der Proben den deutlichsten Futtereffekt, die anderen Methoden zeigten hier vorrangig Gruppen-Effekte, gefolgt von Futter- und Zeiteffekten. Die FAS zeigte den SB vergleichbare Ergebnisse, jedoch weniger sensibel reagierend. Die Interpretation von Qualitätsaspekten war bei konsistent differenzierbaren Proben (FV A, B, C) am fundiertesten mit Hilfe der FS möglich, da über die Synthese von FS und beeinflussende Faktoren schon vielfältige Erkenntnisse vorliegen. Das Pr&M-Muster war nach einer weiteren Methodenentwicklung bei der Deutung von Stoffwechselprozessen sehr hilfreich. Die FAS konnte z.T. eine zu der Fütterungsvariante passende Charakterisierung liefern. Für die SB-M fehlt es noch an Referenzmaterial, um Angaben zu Qualitätsaspekten zu machen, wenngleich Probenunterschiede aufgezeigt und Proben-Eigenschaften charakterisiert werden konnten.