3 resultados para growth from solutions
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
If cities are to become more sustainable and resilient to change it is likely that they will have to engage with food at increasingly localised levels, in order to reduce their dependency on global systems. With 87 percent of people in developed regions estimated to be living in cities by 2050 it can be assumed that the majority of this localised production will occur in and around cities. As part of a 12 month engagement, Queen’s University Belfast designed and implemented an elevated aquaponic food system spanning the top internal floor and exterior roof space of a disused mill in Manchester, England. The experimental aquaponic system was developed to explore the possibilities and difficulties associated with integrating food production with existing buildings. This paper utilises empirical research regarding crop growth from the elevated aquaponic system and extrapolates the findings across a whole city. The resulting research enables the agricultural productive capacity of today’s cities to be estimated and a framework of implementation to be proposed.
Resumo:
This research work aimed at investigating the physiological mechanisms of tolerance of pearl millet to low soil Phosphorus availability and drought under the Sahelian conditions.
Resumo:
The effect of charcoal feeding on manure quality and its subsequent application to enhance soil productivity has received little attention. The objectives of the present study therefore were to investigate the effects of (i) charcoal feeding on manure composition, and (ii) charcoal-enriched manure application on soil fertility parameters and growth of millet (Pennisetum glaucum L.). To this end, two experiments were conducted: First, a goat feeding trial where goats were fed increasing levels of activated charcoal (AC; 0, 3, 5, 7, and 9% of total ration); second, a greenhouse pot experiment using the manure from the feeding trial as an amendment for a sandy soil from northern Oman. We measured manure C, N, P, and K concentrations, soil fertility parameters and microbial biomass indices, as well as plant yield and nutrient concentrations. Manure C concentration increased significantly (P<0.001) from 45.2% (0% AC) to 60.2% (9% AC) with increasing dietary AC, whereas manure N, P, and K concentrations decreased (P<0.001) from 0% AC (N: 2.5%, P: 1.5%, K: 0.8%) to 9% AC (N: 1.7%, P: 0.8%, K: 0.4%). Soil organic carbon, pH, and microbial biomass N showed a response to AC-enriched manure. Yield of millet decreased slightly with AC enrichment, whereas K uptake was improved with increasing AC. We conclude that AC effects on manure quality and soil productivity depend on dosage of manure and AC, properties of AC, trial duration, and soil type.