11 resultados para grass hay

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zusammenfassung: Ziel der Arbeit war ein Methodenvergleich zur Beurteilung der Milchqualität unterschiedlicher Herkünfte. Am Beispiel von Milchproben aus unterschiedlicher Fütterung sowie an Milchproben von enthornten bzw. horntragenden Kühen wurde geprüft, welche der angewendeten Methoden geeignet ist, die Vergleichsproben zu unterscheiden (Differenzierungsfähigkeit der Methoden) und inwieweit eine Qualitätsbeurteilung möglich ist (hinsichtlich Milchleistung, Fett-, Eiweiß-, Lactose- (=F,E,L), Harnstoff-gehalt und Zellzahl (=SCC), Säuerungseigenschaften (=SE), Fettsäuremuster (=FS-Muster), Protein- und Metabolit-Zusammensetzung (=Pr&M), Fluoreszenz-Anregungs-Spektroskopie-Eigenschaften (=FAS) und Steigbild-Merkmalen). Zusätzlich wurde vorab die Steigbildmethode (=SB-M) für das Produkt Rohmilch standardisiert und charakterisiert, um die Reproduzierbarkei der Ergebnisse sicherzustellen. Die Untersuchungen zur SB-M zeigten, dass es Faktoren gibt, die einen deutlichen Einfluß auf die Bildmerkmals-Ausprägung aufweisen. Dazu gehören laborseitig die Klimabedingungen in der Kammer, die Verdünnungsstufe der Probe, die Standzeiten der Vorverdünnung (Reaktionen mit der Luft, Alterung usw.), und tagesspezifisch auftretende Effekte, deren Ursache unbekannt ist. Probenseitig sind sehr starke tierindividuelle Effekte auf die Bildmerkmals-Ausprägung festzustellen, die unabhängig von Fütterung, Alter, Laktationsstadium und Genetik auftreten, aber auch Fütterungsbedingungen der Kühe lassen sich in der Bildmerkmals-Ausprägung wiederfinden. Die Art der Bildauswertung und die dabei berücksichtigten Bildmerkmale ist von großer Bedeutung für das Ergebnis. Die im Rahmen dieser Arbeit untersuchten 46 Probenpaare (aus den Fütterungsvergleichen (=FV) und zur Thematik der Hörner) konnten in 91% der Fälle korrekt gruppiert werden. Die Unterschiede konnten benannt werden. Drei FV wurden auf drei biologisch-dynamischen Höfen unter Praxis-Bedingungen durchgeführt (on-farm-Experimente). Es wurden jeweils zwei vergleichbare Gruppen à mindestens 11 Kühen gebildet, die im Cross-Over-Design gefüttert wurden, mit Probennahme am 14. und 21. Tag je Periode. Es wurden folgende FV untersucht: A: Wiesenheu vs. Kleegrasheu (=KG-Heu), B: Futterrüben (=FuR) vs. Weizen (Ergänzung zu Luzernegrasheu ad lib.), C: Grassilage vs. Grasheu. Bei Versuch A sind die Futtereffekte am deutlichsten, Gruppeneffekte sind gering. Die Milch der Wiesenheu-Variante hat weniger CLA’s und n3- FS und mehr mittellangkettige FS (MCT-FS), das Pr&M-Muster weist auf „Gewebereifung und Ausdifferenzierung“ vs. bei KG-Heu „Nährstoff-fülle, Wachstum und Substanz-Einlagerung und die SB zeigen fein ausdifferenzierte Bildmerkmale. Bei Versuch B sind die Futtereffekte ähnlich groß wie die Gruppeneffekte. Bei vergleichbarer Milchleistung weist die Milch der FuR-Variante höhere F- und E-Gehalte auf, sie säuert schneller und mehr, das FS-Muster weist auf eine „intensive“ Fütterung mit vermehrt MCT- FS, und die Pr&M-Untersuchungen charakterisieren sie mit „Eisentransport und Fetttröpfchenbildung“ vs. bei Weizen „mehr Abwehr-, Regulations- und Transportfunktion“ /. „mehr Lipidsynthese“. Die SB charakterisieren mit „große, kräftige Formen, verwaschen“ vs. „kleine, ausdifferenzierte Bildmerkmal“ für FuR vs. Weizen. Die FAS charakterisiert sie mit „Saftfutter-typisch“ vs. „Samentypisch“. Versuch C weist die geringsten Futtereffekt auf, und deutliche Gruppen- und Zeiteffekte. Milchleistung und F,E,L-Gehalte zeigen keinen Futtereffekt. Die Milch der Heu-Variante säuert schneller, und sie weist mehr SCT und MCT- FS auf. Pr&M-Untersuchungen wurden nicht durchgeführt. Die SB charakterisieren bei Heumilch mit „fein, zart, durchgestaltet, hell“, bei Silagemilch mit „kräftig, wäßrig-verwaschen, dunkler“. Die FAS kann keine konsistenten Unterschiede ermitteln. Der Horn-Einfluß auf die Milchprobe wurde an 34 Probenpaaren untersucht. Von 11 Höfen wurden je zwei möglichst vergleichbare Gruppen zusammengestellt, die sich nur im Faktor „Horn“ unterscheiden, und im wöchentlichen Abstand drei mal beprobt. F,E,L, SCC und SE der Proben sowie die FAS-Messungen weisen keine konsistenten signifikanten Unterschiede zwischen den Horn-Varianten auf. Pr&M weisen bei den untersuchten Proben (von zwei Höfen) auf Horneffekte hin: bei Eh eine Erhöhung von Immun-Abwehr-Funktionen, sowie einer Abnahme phosphorylierter C3- und C6-Metabolite und Beta-Lactoglobulin. Mit den SB ließen sich für die gewählten Merkmale (S-Größe und g.B.-Intensität) keine Horneffekte feststellen. FS, Pr&M-Muster sowie Harnstoffgehalt und SB (und z.T. Milchleistung) zeigten je FV ähnliche Effekt-Intensitäten für Futter-, Gruppen- und Zeiteffekte, und konnten die Cross-Over-Effekte gut wiedergeben. F- und E-Gehalte konnten neben tierindividuellen Effekten nur in FV B auch Futtereffekte aufzeigen. In FV C zeigten die SE der Proben den deutlichsten Futtereffekt, die anderen Methoden zeigten hier vorrangig Gruppen-Effekte, gefolgt von Futter- und Zeiteffekten. Die FAS zeigte den SB vergleichbare Ergebnisse, jedoch weniger sensibel reagierend. Die Interpretation von Qualitätsaspekten war bei konsistent differenzierbaren Proben (FV A, B, C) am fundiertesten mit Hilfe der FS möglich, da über die Synthese von FS und beeinflussende Faktoren schon vielfältige Erkenntnisse vorliegen. Das Pr&M-Muster war nach einer weiteren Methodenentwicklung bei der Deutung von Stoffwechselprozessen sehr hilfreich. Die FAS konnte z.T. eine zu der Fütterungsvariante passende Charakterisierung liefern. Für die SB-M fehlt es noch an Referenzmaterial, um Angaben zu Qualitätsaspekten zu machen, wenngleich Probenunterschiede aufgezeigt und Proben-Eigenschaften charakterisiert werden konnten.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was conducted to assess the effect of air-dried Moringa stenopetala leaf (MSL) supplementation on carcass components and meat quality in Arsi-Bale goats. A total of 24 yearling goats with initial body weight of 13.6+/-0.25 kg were randomly divided into four treatments with six goats each. All goats received a basal diet of natural grass hay ad libitum and 340 g head^(−1) d^(−1) concentrate. The treatment diets contain a control diet without supplementation (T1) and diets supplemented with MSL at a rate of 120 g head^(−1) d^(−1) (T2), 170 g head^(−1) d^(−1) (T3) and 220 g head^(−1) d^(−1) (T4). The results indicated that the average slaughter weight of goats reared on T3 and T4 was 18.2 and 18.3 kg, respectively, being (P<0.05) higher than those of T1 (15.8 kg) and T2 (16.5 kg). Goats fed on T3 and T4 diets had higher (P<0.05) daily weight gain compared with those of T1 and T2. The hot carcass weight in goats reared on T3 and T4 diets was 6.40 and 7.30 kg, respectively, being (P<0.05) higher than those of T1 (4.81 kg) and T2 (5.06 kg). Goats reared on T4 had higher (P<0.05) dressing percentage than those reared in other treatment diets. The rib-eye area in goats reared on T2, T3 and T4 diets was higher (P<0.05) than those of T1. The protein content of the meat in goats reared on T3 and T4 was 24.0 and 26.4%, respectively being significantly higher than those of T1 (19.1%) and T2 (20.1%). In conclusion, the supplementation of MSL to natural grass hay improved the weight gain and carcass parts of Arsi-Bale goats indicating Moringa leaves as alternative protein supplements to poor quality forages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In composite agricultural materials such as grass, tee, medicinal plants; leaves and stems have a different drying time. By this behavior, after leaving the dryer, the stems may have greater moisture content than desired, while the leaves one minor, which can cause either the appearance of fungi or the collapse of the over-dried material. Taking into account that a lot of grass is dehydrated in forced air dryers, especially rotary drum dryers, this research was developed in order to establish conditions enabling to make a separation of the components during the drying process in order to provide a homogeneous product at the end. For this, a rotary dryer consisting of three concentric cylinders and a circular sieve aligned with the more internal cylinder was proposed; so that, once material enters into the dryer in the area of the inner cylinder, stems pass through sieve to the middle and then continue towards the external cylinder, while the leaves continue by the inner cylinder. For this project, a mixture of Ryegrass and White Clover was used. The characteristics of the components of a mixture were: Drying Rate in thin layer and in rotation, Bulk density, Projected Area, Terminal velocity, weight/Area Ratio, Flux through Rotary sieve. Three drying temperatures; 40°C, 60° C and 80° C, and three rotation speeds; 10 rpm, 20 rpm and 40 rpm were evaluated. It was found that the differences in drying time are the less at 80 °C when the dryer rotates at 40 rpm. Above this speed, the material adheres to the walls of the dryer or sieve and does not flow. According to the measurements of terminal velocity of stems and leaves of the components of the mixture, the speed of the air should be less than 1.5 m s-1 in the inner drum for the leaves and less than 4.5 m s-1 in middle and outer drums for stems, in such way that only the rotational movement of the dryer moves the material and achieves a greater residence time. In other hand, the best rotary sieve separation efficiencies were achieved when the material is dry, but the results are good in all the moisture contents. The best rotary speed of sieve is within the critical rotational speed, i.e. 20 rpm. However, the rotational speed of the dryer, including the sieve in line with the inner cylinder should be 10 rpm or less in order to achieve the greatest residence times of the material inside the dryer and the best agitation through the use of lifting flights. With a finite element analysis of a dryer prototype, using an air flow allowing speeds of air already stated, I was found that the best performance occurs when, through a cover, air enters the dryer front of the Middle cylinder and when the inner cylinder is formed in its entirety through a sieve. This way, air flows in almost equal amounts by both the middle and external cylinders, while part of the air in the Middle cylinder passes through the sieve towards the inner cylinder. With this, leaves do not adhere to the sieve and flow along drier, thanks to the rotating movement of the drums and the showering caused by the lifting flights. In these conditions, the differences in drying time are reduced to 60 minutes, but the residence time is higher for the stems than for leaves, therefore the components of the mixture of grass run out of the dryer with the same desired moisture content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand for biomass for bioenergy has increased rapidly in industrialized countries in the recent years. Biogenic energy carriers are known to reduce CO2 emissions. However, the resource-inefficient production of biomass often caused negative impacts on the environment, e.g. biodiversity losses, nitrate leaching, and erosion. The detrimental effects evolved mainly from annual crops. Therefore, the aim of modern bioenergy cropping systems is to combine yield stability and environmental benefits by the establishment of mixed-cropping systems. A particular emphasis is on perennial crops which are perceived as environmentally superior to annual crops. Agroforestry systems represent such mixed perennial cropping systems and consist of a mix of trees and arable crops or grassland within the same area of land. Agroforestry practices vary across the globe and alley cropping is a type of agroforestry system which is well adapted to the temperate zone, with a high degree of mechanization. Trees are planted in rows and crops are planted in the alleyways, which facilitates their management by machinery. This study was conducted to examine a young alley cropping system of willows and two grassland mixtures for bioenergy provision under temperate climate conditions. The first part of the thesis identified possible competition effects between willows and the two grassland mixtures. Since light seemed to be the factor most affecting the yield performance of the understory in temperate agroforestry systems, a biennial in situ artificial shade experiment was established over a separate clover-grass stand to quantify the effects of shade. Data to possible below- and aboveground interactions among willows and the two grassland mixtures and their effects on productivity, sward composition, and quality were monitored along a tree-grassland interface within the alleys. In the second part, productivity of the alley cropping system was examined on a triennial time frame and compared to separate grassland and willow stands as controls. Three different conversion technologies (combustion of hay, integrated generation of solid fuel and biogas from biomass, whole crop digestion) were applied to grassland biomass as feedstock and analyzed for its energetic potential. The energetic potential of willow wood chips was calculated by applying combustion as conversion technique. Net energy balances of separate grassland stands, agroforestry and pure willow stands evaluated their energy efficiency. Results of the biennial artificial shade experiment showed that severe shade (80 % light reduction) halved grassland productivity on average compared to a non-shaded control. White clover as heliophilous plant responded sensitively to limited radiation and its dry matter contribution in the sward decreased with increasing shade, whereas non-leguminous forbs (mainly segetal species) benefited. Changes in nutritive quality could not be confirmed by this experiment. Through the study on interactions within the alleys of the young agroforestry system it was possible to outline changes of incident light, soil temperature and sward composition of clover-grass along the tree-grassland interface. Nearly no effects of trees on precipitation, soil moisture and understory productivity occurred along the interface during the biennial experiment. Considering the results of the productivity and the net energy yield alley cropping system had lower than pure grassland stands, irrespective of the grassland seed mixture or fertilization, but was higher than that for pure willow stands. The comparison of three different energetic conversion techniques for the grassland biomass showed highest net energy yields for hay combustion, whereas the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion performed similarly. However, due to the low fuel quality of hay, its direct combustion cannot be recommended as a viable conversion technique, whereas IFBB fuels were of a similar quality to wood chip from willow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Städtische Biomassen der Grünflächen bilden eine potentielle, bisher weitgehend ungenutzte Ressource für Bioenergie. Kommunen pflegen die Grünflächen, lassen das Material aber verrotten oder führen es Deponien oder Müllverbrennungsanlagen zu. Diese Praxis ist kostenintensiv ohne für die Verwaltungen finanziellen Ausgleich bereitzustellen. Stattdessen könnte das Material energetisch verwertet werden. Zwei mögliche Techniken, um Bioenergie zu gewinnen, wurden mit krautigem Material des städtischen Straßenbegleitgrüns untersucht i) direkte anaerobe Fermentation (4 Schnitte im Jahr) und ii) „Integrierte Festbrennstoff- und Biogasproduktion aus Biomasse“ (IFBB), die Biomasse durch Maischen und mechanisches Entwässern in einen Presssaft und einen Presskuchen trennt (2 Schnitte im Jahr). Als Referenz wurde die aktuelle Pflege ohne Verwertungsoption mitgeführt (8faches Mulchen). Zusätzlich wurde die Eignung von Gras-Laub-Mischungen im IFBB-Verfahren untersucht. Der mittlere Biomasseertrag war 3.24, 3.33 und 5.68 t Trockenmasse ha-1 jeweils für die Pflegeintensitäten Mulchen, 4-Schnitt- und 2-Schnittnutzung. Obwohl die Faserkonzentration in der Biomasse der 2-Schnittnutzung höher war als im Material der 4-Schnittnutzung, unterschieden sich die Methanausbeuten nicht signifikant. Der Presskuchen aus dem krautigen Material des Straßenbegleitgrüns hatte einen Heizwert von 16 MJ kg-1 Trockenmasse, während der Heizwert des Presskuchens der Gras-Laub-Mischung in Abhängigkeit vom Aschegehalt zwischen 15 und 17 MJ kg-1 Trockenmasse lag. Der Aschegehalt der Mischungen war höher als der Grenzwert nach DIN EN 14961-6:2012 (für nicht-holzige Brennstoffe), was auf erhöhte Bodenanhaftung auf Grund der Erntemethoden zurückzuführen sein könnte. Der Aschegehalt des krautigen Materials vom Straßenrand hielt die Norm jedoch ein. Die Elementkonzentration (Ca, Cl, K, Mg, N, Na, P, S, Al, Cd, Cr, Cu, Mn, Pb, Si, Zn) im krautigen Material war generell ähnlich zu Landwirtschafts- oder Naturschutzgrünland. In den Mischungen nahm die Elementkonzentration (Al, Cl, K, N, Na, P, S, Si) mit zunehmendem Laubanteil ab. Die Konzentration von Ca, Mg und der Neutral-Detergenz-Fasern stieg hingegen an. Die IFBB-Technik reduzierte die Konzentrationen der in der Verbrennung besonders schädlichen Elemente Cl, K und N zuverlässig. Außer den potentiell hohen Aschegehalten, wurde während der Untersuchungen kein technischer Grund entdeckt, der einer energetischen Verwertung des getesteten urbanen Materials entgegenstehen würde. Ökonomische, soziale und ökologische Auswirkungen einer Umsetzung müssen beachtet werden. Eine oberflächliche Betrachtung auf Basis des bisherigen Wissens lässt hoffen, dass eine bioenergetische Verwertung städtischen Materials auf allen Ebenen nachhaltig sein könnte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.