27 resultados para generator coordinate Hartree-Fock method
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The finite element method (FEM) is now developed to solve two-dimensional Hartree-Fock (HF) equations for atoms and diatomic molecules. The method and its implementation is described and results are presented for the atoms Be, Ne and Ar as well as the diatomic molecules LiH, BH, N_2 and CO as examples. Total energies and eigenvalues calculated with the FEM on the HF-level are compared with results obtained with the numerical standard methods used for the solution of the one dimensional HF equations for atoms and for diatomic molecules with the traditional LCAO quantum chemical methods and the newly developed finite difference method on the HF-level. In general the accuracy increases from the LCAO - to the finite difference - to the finite element method.
Accurate Hartree-Fock-Slater calculations on small diatomic molecules with the finite-element method
Resumo:
We report on the self-consistent field solution of the Hartree-Fock-Slater equations using the finite-element method for the three small diatomic molecules N_2, BH and CO as examples. The quality of the results is not only better by two orders of magnitude than the fully numerical finite difference method of Laaksonen et al. but the method also requires a smaller number of grid points.
Resumo:
We present spin-polarized Hartree-Fock-Slater calculations performed with the highly accurate numerical finite element method for the atoms N and 0 and the diatomic radical OH as examples.
Resumo:
We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.
Resumo:
The ionization potential of small Hg_n clusters has been calculated. For the first time good agreement with experimental results has been obtained. It is shown that interatomic Coulomb interactions are important. The energy of Hg_n^+ is calculated using the unrestricted inhomogeneous Hartree-Fock approximation. As a consequence of a change in the charge distribution in Hg_n^+ , we obtain an abrupt change in the slope of the ionization potential at the critical cluster size n_cr ~ 14. The presented results are expected to be valid for covalent clusters in between ionized van der Waals clusters and metallic clusters.
Resumo:
In der vorliegenden Arbeit wurde gezeigt, wie mit Hilfe der atomaren Vielteilchenstörungstheorie totale Energien und auch Anregungsenergien von Atomen und Ionen berechnet werden können. Dabei war es zunächst erforderlich, die Störungsreihen mit Hilfe computeralgebraischer Methoden herzuleiten. Mit Hilfe des hierbei entwickelten Maple-Programmpaketes APEX wurde dies für geschlossenschalige Systeme und Systeme mit einem aktiven Elektron bzw. Loch bis zur vierten Ordnung durchgeführt, wobei die entsprechenden Terme aufgrund ihrer großen Anzahl hier nicht wiedergegeben werden konnten. Als nächster Schritt erfolgte die analytische Winkelreduktion unter Anwendung des Maple-Programmpaketes RACAH, was zu diesem Zwecke entsprechend angepasst und weiterentwickelt wurde. Erst hier wurde von der Kugelsymmetrie des atomaren Referenzzustandes Gebrauch gemacht. Eine erhebliche Vereinfachung der Störungsterme war die Folge. Der zweite Teil dieser Arbeit befasst sich mit der numerischen Auswertung der bisher rein analytisch behandelten Störungsreihen. Dazu wurde, aufbauend auf dem Fortran-Programmpaket Ratip, ein Dirac-Fock-Programm für geschlossenschalige Systeme entwickelt, welches auf der in Kapitel 3 dargestellen Matrix-Dirac-Fock-Methode beruht. Innerhalb dieser Umgebung war es nun möglich, die Störungsterme numerisch auszuwerten. Dabei zeigte sich schnell, dass dies nur dann in einem angemessenen Zeitrahmen stattfinden kann, wenn die entsprechenden Radialintegrale im Hauptspeicher des Computers gehalten werden. Wegen der sehr hohen Anzahl dieser Integrale stellte dies auch hohe Ansprüche an die verwendete Hardware. Das war auch insbesondere der Grund dafür, dass die Korrekturen dritter Ordnung nur teilweise und die vierter Ordnung gar nicht berechnet werden konnten. Schließlich wurden die Korrelationsenergien He-artiger Systeme sowie von Neon, Argon und Quecksilber berechnet und mit Literaturwerten verglichen. Außerdem wurden noch Li-artige Systeme, Natrium, Kalium und Thallium untersucht, wobei hier die niedrigsten Zustände des Valenzelektrons betrachtet wurden. Die Ionisierungsenergien der superschweren Elemente 113 und 119 bilden den Abschluss dieser Arbeit.
Resumo:
We report on the solution of the Hartree-Fock equations for the ground state of the H_2 molecule using the finite element method. Both the Hartree-Fock and the Poisson equations are solved with this method to an accuracy of 10^-8 using only 26 x 11 grid points in two dimensions. A 41 x 16 grid gives a new Hartree-Fock benchmark to ten-figure accuracy.
Resumo:
We present the Finite-Element-Method (FEM) in its application to quantum mechanical problems solving for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations of molecules like N_2 and C0 have been obtained. The accuracy achieved with less then 5000 grid points for the total energies of these systems is 10_-8 a.u., which is demonstrated for N_2.
Resumo:
Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.
Resumo:
Non-relativistic and relativistic self-consistent Hartree- Fock-Slater and Dirac-Slater models have been used to calculate one-electron energy levels and ionization energies for UF_5. The calculations were performed in an assumed structure of C_4v symmetry with the uranium atom at the center of mass of the molecule. The spacing and level ordering are compared with earlier results obtained with the MS X\alpha method using the muffin-tin approximation. Connections with the multiphoton isotope separation scheme of UF_6 are discussed.
Resumo:
Non-relativistic Hartree-Fock-Slater and relativistic Dirac-Slater self-consistent orbital models are applied for the analysis of the electronic structure of the chalcogen hexafluorides: SF_6, SeF_6, TeF_6 and PoF_6. The molecular eigenfunctions and eigenvalues are generated using the discrete variational method (DVM) with numerical basis functions. The results obtained for SF_6 are compared with other ab initio calculations. Information about relativistic level shifts and spin-orbit splitting has been obtained by comparison between the non-relativistic and relativistic results.
Resumo:
With a relativistic Hartree-Fock-Slater calculation we determined the most stable configurations of the elements of the possibly quasistable island around Z = 164. It is found that the expected noble gas at Z = 168 should not occur, but instead the element Z = 164 should have the properties of a noble gas.
Resumo:
The chemical elements up to Z = 172 are calculated with a relativistic Hartree-Fock-Slater program taking into account the effect of the extended nucleus. Predictions of the binding energies, the X-ray spectra and the number of electrons inside the nuclei are given for the inner electron shells. The predicted chemical behaviour will be discussed for a11 elements between Z = 104-120 and compared with previous known extrapolations. For the elements Z = 121-172 predictions of their chemistry and a proposal for the continuation of the Periodic Table are given. The eighth chemical period ends with Z = 164 located below Mercury. The ninth period starts with an alkaline and alkaline earth metal and ends immediately similarly to the second and third period with a noble gas at Z = 172. Mit einem relativistischen Hartree-Fock-Slater Rechenprogramm werden die chemischen Elemente bis zur Ordnungszahl 172 berechnet, wobei der Einfluß des ausgedehnten Kernes berücksichtigt wurde. Für die innersten Elektronenschalen werden Voraussagen über deren Bindungsenergie, das Röntgenspektrum und die Zahl der Elektronen im Kern gemacht. Die voraussichtliche Chemie der Elemente zwischen Z = 104 und 120 wird diskutiert und mit bereits vorhandenen Extrapolationen verglichen. Für die Elemente Z = 121-172 wird eine Voraussage über das chemische Verhalten gegeben, sowie ein Vorschlag für die Fortsetzung des Periodensystems gemacht. Die achte chemische Periode endet mit dem Element 164 im Periodensystem unter Quecksilber gelegen. Die neunte Periode beginnt mit einem Alkali- und Erdalkalimetall und endet sofort wieder wie in der zweiten und dritten Periode mit einem Edelgas bei Z = 172.
Resumo:
The electron screening correction in the X-ray transitions in muonic atoms is calculated within a relativistic SCF Hartree-Fock procedure for many transitions and all Z.
Resumo:
A review of relativistic atomic structure calculations is given with a emphasis on the Multiconfigurational-Dirac-Fock method. Its problems and deficiencies are discussed together with the contributions which go beyond the Dirac-Fock procedure.