4 resultados para free abelian group

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finitely generated group is called a Church-Rosser group (growing context-sensitive group) if it admits a finitely generated presentation for which the word problem is a Church-Rosser (growing context-sensitive) language. Although the Church-Rosser languages are incomparable to the context-free languages under set inclusion, they strictly contain the class of deterministic context-free languages. As each context-free group language is actually deterministic context-free, it follows that all context-free groups are Church-Rosser groups. As the free abelian group of rank 2 is a non-context-free Church-Rosser group, this inclusion is proper. On the other hand, we show that there are co-context-free groups that are not growing context-sensitive. Also some closure and non-closure properties are established for the classes of Church-Rosser and growing context-sensitive groups. More generally, we also establish some new characterizations and closure properties for the classes of Church-Rosser and growing context-sensitive languages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show that the locally free class group of an order in a semisimple algebra over a number field is isomorphic to a certain ray class group. This description is then used to present an algorithm that computes the locally free class group. The algorithm is implemented in MAGMA for the case where the algebra is a group ring over the rational numbers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large classes of dihedral and quaternion groups.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let E be a number field and G be a finite group. Let A be any O_E-order of full rank in the group algebra E[G] and X be a (left) A-lattice. We give a necessary and sufficient condition for X to be free of given rank d over A. In the case that the Wedderburn decomposition E[G] \cong \oplus_xM_x is explicitly computable and each M_x is in fact a matrix ring over a field, this leads to an algorithm that either gives elements \alpha_1,...,\alpha_d \in X such that X = A\alpha_1 \oplus ... \oplusA\alpha_d or determines that no such elements exist. Let L/K be a finite Galois extension of number fields with Galois group G such that E is a subfield of K and put d = [K : E]. The algorithm can be applied to certain Galois modules that arise naturally in this situation. For example, one can take X to be O_L, the ring of algebraic integers of L, and A to be the associated order A(E[G];O_L) \subseteq E[G]. The application of the algorithm to this special situation is implemented in Magma under certain extra hypotheses when K = E = \IQ.