4 resultados para forensics behavior model

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we concentrate on solving sequences of nonsymmetric linear systems with block structure arising from compressible flow problems. We attempt to improve the solution process by sharing part of the computational effort throughout the sequence. This is achieved by application of a cheap updating technique for preconditioners which we adapted in order to be used for our applications. Tested on three benchmark compressible flow problems, the strategy speeds up the entire computation with an acceleration being particularly pronounced in phases of instationary behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a phenomenological model, the influence of quantum electrodynamical effects on the prediction of the chemical behavior of superheavy elements within a relativistic Dirac-Slater calculation was investigated. This influence will be small and nondetectable for elements up to Z = 114. For elements near Z = 164 some changes in the ground state configurations occur but the chemical behavior will not change. Using this heuristic model, it is also possible to calculate elements beyond Z = 175. As an example we have chosen element E184 and are now able to make more valid speculations about the chemical behavior of the element than Penneman and co-workers could.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the Institute of Structural Engineering of the Faculty of Civil Engineering, Kassel University, series tests of slab-column connection were carried out, subjected to concentrated punching load. The effects of steel fiber content, concrete compressive strength, tension reinforcement ratio, size effect, and yield stress of tension reinforcement were studied by testing a total of six UHPC slabs and one normal strength concrete slab. Based on experimental results; all the tested slabs failed in punching shear as a type of failure, except the UHPC slab without steel fiber which failed due to splitting of concrete cover. The post ultimate load-deformation behavior of UHPC slabs subjected to punching load shows harmonic behavior of three stages; first, drop of load-deflection curve after reaching maximum load, second, resistance of both steel fibers and tension reinforcement, and third, pure tension reinforcement resistance. The first shear crack of UHPC slabs starts to open at a load higher than that of normal strength concrete slabs. Typically, the diameter of the punching cone for UHPC slabs on the tension surface is larger than that of NSC slabs and the location of critical shear crack is far away from the face of the column. The angle of punching cone for NSC slabs is larger than that of UHPC slabs. For UHPC slabs, the critical perimeter is proposed and located at 2.5d from the face of the column. The final shape of the punching cone is completed after the tension reinforcement starts to yield and the column stub starts to penetrate through the slab. A numerical model using Finite Element Analysis (FEA) for UHPC slabs is presented. Also some variables effect on punching shear is demonstrated by a parametric study. A design equation for UHPC slabs under punching load is presented and shown to be applicable for a wide range of parametric variations; in the ranges between 40 mm to 300 mm in slab thickness, 0.1 % to 2.9 % in tension reinforcement ratio, 150 MPa to 250 MPa in compressive strength of concrete and 0.1 % to 2 % steel fiber content. The proposed design equation of UHPC slabs is modified to include HSC and NSC slabs without steel fiber, and it is checked with the test results from earlier researches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.