3 resultados para extended depth from focus reconstruction
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In der Praxis kommt es bei der spanenden Bearbeitung immer wieder zu großen Standwegunterschieden identischer Werkzeuge bei vordergründig identischen Bearbeitungsrandbedingungen. Insbesondere bei Fertigungsschritten, die das Bohren als Vorbearbeitung erfordern, kommt es gelegentlich zu atypischen Verschleißerscheinungen, die auf das Entstehen einer Neuhärtezone an der Werkstückoberfläche beim Bohren zurückgeführt werden. Grundsätzlich sind Randzonenveränderungen eine Folge der mechanischen und thermischen Beanspruchung bei der Bearbeitung. Beim Eindringen des Schneidkeils kommt es zu Kornverzerrungen, welche die Werkstückhärte bis in eine Tiefe von 40 bis 80 µm erhöhen können. Überdies wird die Randzone des Werkstücks durch den Bearbeitungsvorgang und den Spantransport erhitzt und durch den Kühlschmierstoff bzw. die so genannte Selbstabschreckung im Anschluss sehr schnell abgekühlt. So kann es in Abhängigkeit der Randbedingungen zu Gefügeänderungen mit härtesteigernder (Sekundärabschreckung) oder härtemindernder (Anlasseffekte) Wirkung kommen. Nicht zuletzt beeinflussen beide Beanspruchungsarten auch das Ausmaß der Eigenspannungen in der Werkstückoberfläche. In dieser Arbeit werden die beim Kernlochbohren erzeugten Randzonenveränderungen sowie die Standzeit von Folgebearbeitungswerkzeugen, wie Gewindebohrern und Gewindeformern, und deren Abhängigkeit vom Verschleißzustand des Kernlochbohrers untersucht. Weiterhin werden mit Hilfe einer Energiebilanz die Anteile herausgefiltert, die primär die Eigenschaften der Bohrungsrandzone beeinflussen. Dies geschieht mit Hilfe einer mathematischen Modellierung des Bohrprozesses, in der die Einflüsse der Schneidkantengeometrie, der Schneidkantenverrundung, der Schneidkantenfase sowie des Freiflächenverschleißes berücksichtigt werden.
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.