4 resultados para exciton binding energy
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
For the theoretical investigation of local phenomena (adsorption at surfaces, defects or impurities within a crystal, etc.) one can assume that the effects caused by the local disturbance are only limited to the neighbouring particles. With this model, that is well-known as cluster-approximation, an infinite system can be simulated by a much smaller segment of the surface (Cluster). The size of this segment varies strongly for different systems. Calculations to the convergence of bond distance and binding energy of an adsorbed aluminum atom on an Al(100)-surface showed that more than 100 atoms are necessary to get a sufficient description of surface properties. However with a full-quantummechanical approach these system sizes cannot be calculated because of the effort in computer memory and processor speed. Therefore we developed an embedding procedure for the simulation of surfaces and solids, where the whole system is partitioned in several parts which itsself are treated differently: the internal part (cluster), which is located near the place of the adsorbate, is calculated completely self-consistently and is embedded into an environment, whereas the influence of the environment on the cluster enters as an additional, external potential to the relativistic Kohn-Sham-equations. The basis of the procedure represents the density functional theory. However this means that the choice of the electronic density of the environment constitutes the quality of the embedding procedure. The environment density was modelled in three different ways: atomic densities; of a large prepended calculation without embedding transferred densities; bulk-densities (copied). The embedding procedure was tested on the atomic adsorptions of 'Al on Al(100) and Cu on Cu(100). The result was that if the environment is choices appropriately for the Al-system one needs only 9 embedded atoms to reproduce the results of exact slab-calculations. For the Cu-system first calculations without embedding procedures were accomplished, with the result that already 60 atoms are sufficient as a surface-cluster. Using the embedding procedure the same values with only 25 atoms were obtained. This means a substantial improvement if one takes into consideration that the calculation time increased cubically with the number of atoms. With the embedding method Infinite systems can be treated by molecular methods. Additionally the program code was extended by the possibility to make molecular-dynamic simulations. Now it is possible apart from the past calculations of fixed cores to investigate also structures of small clusters and surfaces. A first application we made with the adsorption of Cu on Cu(100). We calculated the relaxed positions of the atoms that were located close to the adsorption site and afterwards made the full-quantummechanical calculation of this system. We did that procedure for different distances to the surface. Thus a realistic adsorption process could be examined for the first time. It should be remarked that when doing the Cu reference-calculations (without embedding) we begun to parallelize the entire program code. Only because of this aspect the investigations for the 100 atomic Cu surface-clusters were possible. Due to the good efficiency of both the parallelization and the developed embedding procedure we will be able to apply the combination in future. This will help to work on more these areas it will be possible to bring in results of full-relativistic molecular calculations, what will be very interesting especially for the regime of heavy systems.
Resumo:
Während der letzten 20 Jahre hat sich das Periodensystem bis zu den Elementen 114 und 116 erweitert. Diese sind kernphysikalisch nachgewiesen, so dass jetzt die chemische Untersuchung an erster Selle steht. Nachdem sich das Periodensystem bis zum Element 108 so verhält, wie man es dem Periodensystem nach annimmt, wird in dieser Arbeit die Chemie des Elements 112 untersucht. Dabei geht es um die Adsorptionsenergie auf einer Gold-Ober fläche, weil dies der physikalisch/chemische Prozess ist, der bei der Analyse angewandt wird. Die Methode, die in dieser Arbeit angwandt wird, ist die relativistische Dichtefunktionalmethode. Im ersten Teil wird das Vielkörperproblem in allgemeiner Form behandelt, und im zweiten die grundlegenden Eigenschaften und Formulierungen der Dichtefunktionaltheorie. Die Arbeit beschreibt zwei prinzipiell unterschiedliche Ansätze, wie die Adsorptionsenergie berechnet werden kann. Zum einen ist es die sogenannte Clustermethode, bei der ein Atom auf ein relativ kleines Cluster aufgebracht und dessen Adsorptionsenergie berechnet wird. Wenn es gelingt, die Konvergenz mit der Größe des Clusters zu erreichen, sollte dies zu einem Wert für die Adsorptionsenergie führen. Leider zeigt sich in den Rechnungen, dass aufgrund des zeitlichen Aufwandes die Konvergenz für die Clusterrechnungen nicht erreicht wird. Es werden sehr ausführlich die drei verschiedenen Adsorptionsplätze, die Top-, die Brücken- und die Muldenposition, berechnet. Sehr viel mehr Erfolg erzielt man mit der Einbettungsmethode, bei der ein kleiner Cluster von vielen weiteren Atomen an den Positionen, die sie im Festkörpers auf die Adsorptionsenergie soweit sichergestellt ist, dass physikalisch-chemisch gute Ergebnisse erzielt werden. Alle hier gennanten Rechnungen sowohl mit der Cluster- wie mit der Einbettungsmethode verlangen sehr, sehr lange Rechenzeiten, die, wie oben bereits erwähnt, nicht zu einer Konvergenz für die Clusterrechnungen ausreichten. In der Arbeit wird bei allen Rechnungen sehr detailliert auf die Abhängigkeit von den möglichen Basissätzen eingegangen, die ebenfalls in entscheidender Weise zur Länge und Qualität der Rechnungen beitragen. Die auskonvergierten Rechnungen werden in der Form von Potentialkurven, Density of States (DOS), Overlap Populations sowie Partial Crystal Overlap Populations analysiert. Im Ergebnis zeigt sich, dass die Adsoptionsenergie für das Element 112 auf einer Goldoberfläche ca. 0.2 eV niedriger ist als die Adsorption von Quecksilber auf der gleichen Ober fläche. Mit diesem Ergebnis haben die experimentellen Kernchemiker einen Wert an der Hand, mit dem sie eine Anhaltspunkt haben, wo sie bei den Messungen die wenigen zu erwartenden Ereignisse finden können.
Resumo:
The modification of the two center screened electronic Coulomb potential due to relativistic kinematical effects is investigated in the Coulomb gauge. Both nuclear and electronic charges were approximated by Gaussian distributions. For ion velocities v/c =0.1 the effect may roughly be approximated by a 0.1% increase in the effective strength for the monopole term of the two center potential. Thus for ion kinetic energies not exceeding a few MeV/nucleon this relativistic contribution induces small effects on the binding energy of the 1 \omega-electrons except for super critical charges.
Resumo:
Die zunehmende Luftverschmutzung aufgrund des steigenden Energiebedarfs und Mobilitätsanspruchs der Bevölkerung, insbesondere in urbanen Gebieten, erhöht das Gefährdungspotential für die Gesundheit und verschlechtert so die Lebensqualität. Neben der Vermeidung von Emissionen toxischer Gase als mittel- und langfristig optimale Maßnahme zur Verbesserung der Luftqualität, stellt der Abbau emittierter Luftschadstoffe ein geeignetes und kurzfristig wirksames Mittel dar. Ein solcher Abbau kann durch Photokatalyse erzielt werden, allerdings nutzen Photokatalysatoren, die auf dem Halbleiter Titandioxid (TiO2) basieren, das solare Emissionsspektrum nur geringfüfig aus und sind in Innenräumen und anderen UV-schwachen Bereichen nicht wirksam. Um diese Nachteile zu überwinden, wurde ein Photokatalysator entwickelt und hergestellt, der aus TiO2 (P25) als UV-aktiver Photokatalysator und als Trägermaterial sowie einem seinerseits im Vis-Bereich photoaktiven Porphyrazin-Farbstoff als Beschichtung besteht. Die sterisch anspruchsvollen und in der Peripherie mit acht Bindungsmotiven für TiO2 versehenen Farbstoffmoleküle wurden zu diesem Zweck auf der Halbleiteroberfläche immobilisiert. Die so gebildeten Porphyrazin-Titandioxid-Hybride wurde ausführlich charakterisiert. Dabei wurden unter anderem die Bindung der Farbstoffe auf der Titandioxidoberfläche mittels Adsorptionsisothermen und die UV/Vis-spektroskopischen Eigenschaften des Hybridmaterials untersucht. Zur Bestimmung der photokatalytischen Aktivitäten der Einzelkomponenten und des Hybridmaterials wurden diese auf die Fähigkeit zur Bildung von Singulett-Sauerstoff, Wasserstoffperoxid und Hydroxylradikalen hin sowie in einem an die ISO-22197-1 angelehnten Verfahren auf die Fähigkeit zum Abbau von NO hin jeweils bei Bestrahlung in drei Wellenlängenbereichen (UV-Strahlung, blaues Licht und rotes Licht) geprüft. Darüber hinaus konnte die Aktivität des Hybridmaterials bei der Photodynamischen Inaktivierung (PDI) von Bakterien unter UV- und Rotlichtbestrahlung im Vergleich zum reinen Ttandioxid bestimmt werden. Die Charakterisierung des Hybridmaterials ergab, dass die Farbstoffmoleküle in einer neutralen Suspension nahezu irreversibel in einer monomolekularen Schicht mit einer Bindungsenergie von -41.43 kJ/mol an die Oberfläche gebunden sind und das Hybridmaterial mit hohen Extinktionskoeffizienten von bis zu 105 M-1cm-1 in großen Bereichen des UV/Vis-Spektrums Photonen absorbiert. Das Spektrum des Hybridmaterials setzt sich dabei additiv aus den beiden Einzelspektren zusammen. Die Auswirkungen der Charakterisierungsergebnisse auf die Bildung reaktiver Sauerstoffspezies wurden ausführlich diskutiert. Der Vergleich der Aktivitäten in Bezug auf die Bildung der reaktiven Sauerstoffspezies zeigte, dass die Aktivität des Hybridmaterials bis auf die bei der Bildung von Hydroxylradikalen unter UV-Bestrahlung in allen Versuchen deutlich höher war als die Aktivität des reinen Titandioxids. Im Gegensatz zu reinem Titandioxid erzeugte das Hybridmaterial in allen untersuchten Wellenlängenbereichen Mengen an Singulett-Sauerstoff, die photophysikalisch eindeutig detektierbar waren. Zur Erklärung und Deutung dieser Beobachtungen wurde eine differenzierte Diskussion geführt, die die Ergebnisse der Hybridpartikelcharakterisierung aufgreift und implementiert. Der Vergleich der NO-Abbaueffizienzen ergab bei allen Experimenten durchgängig deutlich höhere Werte für das Hybridmaterial. Zudem wurden durch das Hybridmaterial nachgewiesenermaßen wesentlich geringere Mengen des unerwünschten Nebenprodukts des Abbaus (NO2) gebildet. Im Zuge der Diskussion wurden verschiedene mögliche Mechanismen der „sauberen“ Oxidation zu Nitrat durch das Hybridmaterial vorgestellt. Untersuchungen zur Photodynamischen Inaktivierung verschiedener Bakterien ergaben, dass das Hybridmaterial neben einer zu P25 ähnlichen Aktivität unter UV-Bestrahlung, anders als P25, auch eine PDI verschiedener Bakterien unter Rotlichtbestrahlung erreicht.