5 resultados para elliptic curves
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Bildbasierte Authentifizierung und Verschlüsselung: Identitätsbasierte Kryptographie (oft auch identity Based Encryption, IBE) ist eine Variation der asymmetrischen Schlüsselverfahren, bei der der öffentliche Schlüssel des Anwenders eine beliebig wählbare Zeichenfolge sein darf, die dem Besitzer offensichtlich zugeordnet werden kann. Adi Shamir stellte 1984 zunächst ein solches Signatursystem vor. In der Literatur wird dabei als öffentlicher Schlüssel meist die Email-Adresse oder eine Sozialversicherungsnummer genannt. Der Preis für die freie Schlüsselwahl ist die Einbeziehung eines vertrauenswürdigen Dritten, genannt Private Key Generator, der mit seinem privaten Generalschlüssel den privaten Schlüssel des Antragstellers generiert. Mit der Arbeit von Boneh und Franklin 2001 zum Einsatz der Weil-Paarbildung über elliptischen Kurven wurde IBE auf eine sichere und praktikable Grundlage gestellt. In dieser Arbeit wird nach einer allgemeinen Übersicht über Probleme und Lösungsmöglichkeiten für Authentifizierungsaufgaben im zweiten Teil als neue Idee der Einsatz eines Bildes des Anwenders als öffentlicher Schlüssel vorgeschlagen. Dazu wird der Ablauf der Schlüsselausgabe, die Bestellung einer Dienstleistung, z. B. die Ausstellung einer personengebundenen Fahrkarte, sowie deren Kontrolle dargestellt. Letztere kann offline auf dem Gerät des Kontrolleurs erfolgen, wobei Ticket und Bild auf dem Handy des Kunden bereitliegen. Insgesamt eröffnet sich dadurch die Möglichkeit einer Authentifizierung ohne weitere Preisgabe einer Identität, wenn man davon ausgeht, dass das Bild einer Person angesichts allgegenwärtiger Kameras sowieso öffentlich ist. Die Praktikabilität wird mit einer Implementierung auf der Basis des IBE-JCA Providers der National University of Ireland in Maynooth demonstriert und liefert auch Aufschluss auf das in der Praxis zu erwartende Laufzeitverhalten.
Resumo:
Diese Arbeit beschäftigt sich mit der Frage, wie sich in einer Familie von abelschen t-Moduln die Teilfamilie der uniformisierbaren t-Moduln beschreiben lässt. Abelsche t-Moduln sind höherdimensionale Verallgemeinerungen von Drinfeld-Moduln über algebraischen Funktionenkörpern. Bekanntermaßen lassen sich Drinfeld-Moduln in allgemeiner Charakteristik durch analytische Tori parametrisieren. Diese Tatsache überträgt sich allerdings nur auf manche t-Moduln, die man als uniformisierbar bezeichnet. Die Situation hat eine gewisse Analogie zur Theorie von elliptischen Kurven, Tori und abelschen Varietäten über den komplexen Zahlen. Um zu entscheiden, ob ein t-Modul in diesem Sinne uniformisierbar ist, wendet man ein Kriterium von Anderson an, das die rigide analytische Trivialität der zugehörigen t-Motive zum Inhalt hat. Wir wenden dieses Kriterium auf eine Familie von zweidimensionalen t-Moduln vom Rang vier an, die von Koeffizienten a,b,c,d abhängen, und gelangen dabei zur äquivalenten Fragestellung nach der Konvergenz von gewissen rekursiv definierten Folgen. Das Konvergenzverhalten dieser Folgen lässt sich mit Hilfe von Newtonpolygonen gut untersuchen. Schließlich erhält man durch dieses Vorgehen einfach formulierte Bedingungen an die Koeffizienten a,b,c,d, die einerseits die Uniformisierbarkeit garantieren oder andererseits diese ausschließen.
Resumo:
Total energy SCF calculations were performed for noble gas difluorides in a relativistic procedure and compared with analogous non-relativistic calculations. The discrete variational method with numerical basis functions was used. Rather smooth potential energy curves could be obtained. The theoretical Kr - F and Xe - F bond distances were calculated to be 3.5 a.u. and 3.6 a.u. which should be compared with the experimental values of 3.54 a.u. and 3.7 a.u. Although the dissociation energies are off by a factor of about five it was found that ArF_2 may be a stable molecule. Theoretical ionization energies for the outer levels reproduce the experimental values for KrF_2 and XeF_2 to within 2 eV.
Resumo:
A LCAO-MO (linear combination of atomic orbitals - molecular orbitals) relativistic Dirac-Fock-Slater program is presented, which allows one to calculate accurate total energies for diatomic molecules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integrations as well as the solution of the Poisson equation are done fully numerical, with a relative accuracy of 10{^-5} - 10{^-6}. The details of the method as well as first results are presented here.
Resumo:
Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.