2 resultados para electrode connection

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the behaviour of beam-to-column composite connection more sophisticated finite element models is required, since component model has some severe limitations. In this research a generic finite element model for composite beam-to-column joint with welded connections is developed using current state of the art local modelling. Applying mechanically consistent scaling method, it can provide the constitutive relationship for a plane rectangular macro element with beam-type boundaries. Then, this defined macro element, which preserves local behaviour and allows for the transfer of five independent states between local and global models, can be implemented in high-accuracy frame analysis with the possibility of limit state checks. In order that macro element for scaling method can be used in practical manner, a generic geometry program as a new idea proposed in this study is also developed for this finite element model. With generic programming a set of global geometric variables can be input to generate a specific instance of the connection without much effort. The proposed finite element model generated by this generic programming is validated against testing results from University of Kaiserslautern. Finally, two illustrative examples for applying this macro element approach are presented. In the first example how to obtain the constitutive relationships of macro element is demonstrated. With certain assumptions for typical composite frame the constitutive relationships can be represented by bilinear laws for the macro bending and shear states that are then coupled by a two-dimensional surface law with yield and failure surfaces. In second example a scaling concept that combines sophisticated local models with a frame analysis using a macro element approach is presented as a practical application of this numerical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we have mainly achieved the following: 1. we provide a review of the main methods used for the computation of the connection and linearization coefficients between orthogonal polynomials of a continuous variable, moreover using a new approach, the duplication problem of these polynomial families is solved; 2. we review the main methods used for the computation of the connection and linearization coefficients of orthogonal polynomials of a discrete variable, we solve the duplication and linearization problem of all orthogonal polynomials of a discrete variable; 3. we propose a method to generate the connection, linearization and duplication coefficients for q-orthogonal polynomials; 4. we propose a unified method to obtain these coefficients in a generic way for orthogonal polynomials on quadratic and q-quadratic lattices. Our algorithmic approach to compute linearization, connection and duplication coefficients is based on the one used by Koepf and Schmersau and on the NaViMa algorithm. Our main technique is to use explicit formulas for structural identities of classical orthogonal polynomial systems. We find our results by an application of computer algebra. The major algorithmic tools for our development are Zeilberger’s algorithm, q-Zeilberger’s algorithm, the Petkovšek-van-Hoeij algorithm, the q-Petkovšek-van-Hoeij algorithm, and Algorithm 2.2, p. 20 of Koepf's book "Hypergeometric Summation" and it q-analogue.