4 resultados para egg producti
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This paper presents the impact of integrating interventions like nutrition gardening, livestock rearing, product diversification and allied income generation activities in small and marginal coconut homesteads along with nutrition education in improving the food and nutritional security as well as the income of the family members. The activities were carried out through registered Community Based Organizations (CBOs) in three locations in Kerala, India during 2005-2008. Data was collected before and after the project periods through interviews using a pre-tested questionnaire containing statements indicating the adequacy, quality and diversity of food materials. Fifty respondents each were randomly selected from the three communities, thereby resulting in a total sample size of 150. The data was analysed using SPSS by adopting statistical tools like frequency, average, percentage analysis, t – test and regression. Participatory planning and implementation of diverse interventions notably intercropping and off-farm activities along with nutrition education brought out significant improvements in the food and nutritional security, in terms of frequency and quantity of consumption as well as diet diversity. At the end of the project, 96%of the members became completely food secure and 72% nutritionally secure. The overall consumption of fruits, vegetables and milk by both children and adults and egg by children recorded increase over the project period. Consumption of fish was more than the Recommended Dietary Intake (RDI) level during pre and post project periods. Project interventions like nutrition gardening could bring in surplus consumption of vegetables (35%) and fruits (10%) than RDI. In spite of the increased consumption of green leafy vegetables and milk and milk products over the project period, the levels of consumption were still below the RDI levels. CBO-wise analysis of the consumption patterns revealed the need for location-specific interventions matching to the needs and preferences of the communities.
Resumo:
A 12-week experiment was carried out to investigate the effects of substituting Giant African snail meal for fish meal in laying hens diet. Four diets were formulated to contain snail meal as replacement for fish meal at 0 (control), 33, 67 and 100%. A total of 120 Shaver Brown pullets aged 18 weeks were allocated to the dietary treatments in a randomised design. Each treatment consisted of three replicates and ten birds per replicate. Feed intake increased only for the 33% treatment as compared to the 67% replacement diet but did not differ from the other treatments. There were no significant treatment effects on egg performance parameters observed (egg production, egg weight, total egg mass, feed conversion ratio and percent shell). The overall feed cost of egg production reduced on the snail meal-based diets. The organoleptic evaluation of boiled eggs revealed no difference between the treatments. Based on these results it was concluded that total replacement of fish meal with cooked snail meat meal does not compromise laying performance or egg quality. The substitution is beneficial in terms of production cost reduction and the reduction of snails will have a beneficial impact especially where these snails are a serious agricultural pest. The manual collection and processing of snails can also become a source of rural income.
Resumo:
Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.
Resumo:
The nematicidal activity of mustard plant against hatching, migration and mortality of the root-knot nematode Meloidogyne javanica was investigated. In vitro test confirmed that mixing the sandy clay soil mixture with mustard as 4% as a biofumigant significantly reduce the percentage of egg hatching at all different incubation periods 24, 48, 72, 96 and 168 h, compared to control treatment (un-amended mixture soil and eggs in free water). Results indicate that the percentage of egg hatching reduction was 88.5, 90, 81.4, 74 and 69.4%, respectively. Mustard mixed with soil as a biofumigant led to high percentage of larval mortality at the different intervals periods in vitro. The percentage of larval mortality was 94, 100, 90.5, 90.5, and 79.4%, respectively compared to control. Laboratory results confirmed that the highest reduction in egg hatching and larval mortality was obtained after incubation period for 48 h. In vivo experiment reveals that the incorporation of the soil pots with mustard at all different doses used 3, 5% (48 h before nematode inoculation, or soil infestation with nematode), and 5% (one week before nematode inoculation or 7% of soil weight) significantly reduces all the nematode parameters compared to plant treated nematode alone. All nematode parameters i.e. the number of galls per root system, gall index, number of egg masses per root system, as well as number of juveniles per 250g soil showed high reduction with mixing the soil pots with mustard at 5% (one week before nematode inoculation), followed by the same treatment for 48h before nematode inoculation. Mustard application, one week before nematode inoculation, reduced the nematode parameters by 97, 64, 97, and 93%, respectively, compared to control. The percent of chemical components i.e. total sugars, total amino acids and total phenols were markedly enhanced compared to positive and negative control. The highest percentage was obtained with mustard at 5% one week before nematode inoculation by 68.7, 57.3 and 45%, respectively. Finally, we have to conclude that this modified technology is an innovative and can be used efficiently to control Root-knot nematode under organic agriculture and Global GAP agricultural systems instead of these carcinogenic nematicides.