9 resultados para dynamic dispersion compensation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Es ist bekannt, dass die Dichte eines gelösten Stoffes die Richtung und die Stärke seiner Bewegung im Untergrund entscheidend bestimmen kann. Eine Vielzahl von Untersuchungen hat gezeigt, dass die Verteilung der Durchlässigkeiten eines porösen Mediums diese Dichteffekte verstärken oder abmindern kann. Wie sich dieser gekoppelte Effekt auf die Vermischung zweier Fluide auswirkt, wurde in dieser Arbeit untersucht und dabei das experimentelle sowohl mit dem numerischen als auch mit dem analytischen Modell gekoppelt. Die auf der Störungstheorie basierende stochastische Theorie der macrodispersion wurde in dieser Arbeit für den Fall der transversalen Makodispersion. Für den Fall einer stabilen Schichtung wurde in einem Modelltank (10m x 1.2m x 0.1m) der Universität Kassel eine Serie sorgfältig kontrollierter zweidimensionaler Experimente an einem stochastisch heterogenen Modellaquifer durchgeführt. Es wurden Versuchsreihen mit variierenden Konzentrationsdifferenzen (250 ppm bis 100 000 ppm) und Strömungsgeschwindigkeiten (u = 1 m/ d bis 8 m/d) an drei verschieden anisotrop gepackten porösen Medien mit variierender Varianzen und Korrelationen der lognormal verteilten Permeabilitäten durchgeführt. Die stationäre räumliche Konzentrationsausbreitung der sich ausbreitenden Salzwasserfahne wurde anhand der Leitfähigkeit gemessen und aus der Höhendifferenz des 84- und 16-prozentigen relativen Konzentrationsdurchgang die Dispersion berechnet. Parallel dazu wurde ein numerisches Modell mit dem dichteabhängigen Finite-Elemente-Strömungs- und Transport-Programm SUTRA aufgestellt. Mit dem kalibrierten numerischen Modell wurden Prognosen für mögliche Transportszenarien, Sensitivitätsanalysen und stochastische Simulationen nach der Monte-Carlo-Methode durchgeführt. Die Einstellung der Strömungsgeschwindigkeit erfolgte - sowohl im experimentellen als auch im numerischen Modell - über konstante Druckränder an den Ein- und Auslauftanks. Dabei zeigte sich eine starke Sensitivität der räumlichen Konzentrationsausbreitung hinsichtlich lokaler Druckvariationen. Die Untersuchungen ergaben, dass sich die Konzentrationsfahne mit steigendem Abstand von der Einströmkante wellenförmig einem effektiven Wert annähert, aus dem die Makrodispersivität ermittelt werden kann. Dabei zeigten sich sichtbare nichtergodische Effekte, d.h. starke Abweichungen in den zweiten räumlichen Momenten der Konzentrationsverteilung der deterministischen Experimente von den Erwartungswerten aus der stochastischen Theorie. Die transversale Makrodispersivität stieg proportional zur Varianz und Korrelation der lognormalen Permeabilitätsverteilung und umgekehrt proportional zur Strömungsgeschwindigkeit und Dichtedifferenz zweier Fluide. Aus dem von Welty et al. [2003] mittels Störungstheorie entwickelten dichteabhängigen Makrodispersionstensor konnte in dieser Arbeit die stochastische Formel für die transversale Makrodispersion weiter entwickelt und - sowohl experimentell als auch numerisch - verifiziert werden.
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.
Resumo:
Temporal changes in odor concentration are vitally important to many animals orienting and navigating in their environment. How are such temporal changes detected? Within the scope of the present work an accurate stimulation and analysis system was developed to examine the dynamics of physiological properties of Drosophila melanogaster olfactory receptor organs. Subsequently a new method for delivering odor stimuli was tested and used to present the first dynamic characterization of olfactory receptors at the level of single neurons. Initially, recordings of the whole antenna were conducted while stimulating with different odors. The odor delivery system allowed the dynamic characterization of the whole fly antenna, including its sensilla and receptor neurons. Based on the obtained electroantennogram data a new odor delivery method called digital sequence method was developed. In addition the degree of accuracy was enhanced, initially using electroantennograms, and later recordings of odorant receptor cells at the single sensilla level. This work shows for the first time that different odors evoked different responses within one neuron depending on the chemical structure of the odor. The present work offers new insights into the dynamic properties of olfactory transduction in Drosophila melanogaster and describes time dependent parameters underlying these properties.
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.
Resumo:
Almost everyone sketches. People use sketches day in and day out in many different and heterogeneous fields, to share their thoughts and clarify ambiguous interpretations, for example. The media used to sketch varies from analog tools like flipcharts to digital tools like smartboards. Whereas analog tools are usually affected by insufficient editing capabilities like cut/copy/paste, digital tools greatly support these scenarios. Digital tools can be grouped into informal and formal tools. Informal tools can be understood as simple drawing environments, whereas formal tools offer sophisticated support to create, optimize and validate diagrams of a certain application domain. Most digital formal tools force users to stick to a concrete syntax and editing workflow, limiting the user’s creativity. For that reason, a lot of people first sketch their ideas using the flexibility of analog or digital informal tools. Subsequently, the sketch is "portrayed" in an appropriate digital formal tool. This work presents Scribble, a highly configurable and extensible sketching framework which allows to dynamically inject sketching features into existing graphical diagram editors, based on Eclipse GEF. This allows to combine the flexibility of informal tools with the power of formal tools without any effort. No additional code is required to augment a GEF editor with sophisticated sketching features. Scribble recognizes drawn elements as well as handwritten text and automatically generates the corresponding domain elements. A local training data library is created dynamically by incrementally learning shapes, drawn by the user. Training data can be shared with others using the WebScribble web application which has been created as part of this work.