2 resultados para dyes, reagents, indicators, markers and buffers

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tubular structures, which transport essential gases, liquids, or cells from one site to another, are shared among various divergent organisms. These highly organized tubular networks include lung, kidney, vasculature and mammary gland in mammals as well as trachea and salivary gland in Drosophila melanogaster. Many questions regarding the tubular morphogenesis cannot be addressed sufficiently by investigating the mammalian organs because their structures are extremely complex and therefore, systematic analyses of genetic and cellular programs guiding the development is not possible. In contrast, the Drosophila tracheal development provides an excellent model system since many molecular markers and powerful tools for genetic manipulations are available. Two mechanisms were shown to be important for the outgrowth of tracheal cells: the FGF signaling pathway and the interaction between the tracheal cells and the surrounding mesodermal cells. The Drosophila FGF ligand encoded by branchless (bnl) is localized in groups of cells near tracheal metameres. The tracheal cells expressing the FGF receptor breathless (btl) respond to these sources of FGF ligand and extend towards them. However, this FGF signaling pathway is not sufficient for the formation of continuous dorsal trunk, the only muticellular tube in tracheal system. Recently, it was found out that single mesodermal cells called bridge-cells are essential for the formation of continuous dorsal trunk as they direct the outgrowth of dorsal trunk cells towards the correct targets. The results in this PhD thesis demonstrate that a cell adhesion molecule Capricious (Caps), which is specifically localized on the surface of bridge-cells, plays an essential role in guiding the outgrowing dorsal trunk cells towards their correct targets. When caps is lacking, some bridge-cells cannot stretch properly towards the adjacent posterior tracheal metameres and thus fail to interconnect the juxtaposing dorsal trunk cells. Consequently, discontinuous dorsal trunks containing interruptions at several positions are formed. On the other hand, when caps is ectopically expressed in the mesodermal cells through a twi-GAL4 driver, these mesodermal cells acquire a guidance function through ectopic caps and misguide the outgrowing dorsal trunk cells in abnormal directions. As a result, disconnected dorsal trunks are formed. These loss- and gain-of-function studies suggest that Caps presumably establishes the cell-to-cell contact between the bridge-cells and the tracheal cells and thereby mediates directly the guidance function of bridge-cells. The most similar protein known to Caps is another cell adhesion molecule called Tartan (Trn). Interestingly, trn is expressed in the mesodermal cells but not in the bridge-cells. When trn is lacking, the outgrowth of not only the dorsal trunks but also the lateral trunks are disrupted. However, in contrast to the ectopic expression of caps, the misexpression of trn does not affect tracheal development. Whereas Trn requires only its extracellular domain to mediate the matrix function, Caps requires both its extracellular and intracellular domains to function as a guidance molecule in the bridge-cells. These observations suggest that Trn functions differently from Caps during tracheal morphogenesis. Presumably, Trn mediates a matrix function of mesodermal cells, which support the tracheal cells to extend efficiently through the surrounding mesodermal tissue. In order to determine which domains dictate the functional specificity of Caps, two hybrid proteins CapsEdTrnId, which contains the Caps extracellular domain and the Trn intracellular domain, and TrnEdCapsId, which consists of the Trn extracellular domain and the Caps intracellular domain, were constructed. Gain of function and rescue experiments with these hybrid proteins suggest on one hand that the extracellular domains of Caps and Trn are functionally redundant and on the other hand that the intracellular domain dictates the functional specificity of Caps. In order to identify putative interactors of Caps, yeast two-hybrid screening was performed. An in vivo interaction assay in yeast suggests that Ras64B interacts specifically with the Caps intracellular domain. In addition, an in vitro binding assay reveals a direct interaction between an inactive form of Ras64B and the Caps intracellular domain. ras64B, which encodes a small GTPase, is expressed in the mesodermal cells concurrently as caps. Finally, a gain-of-function study with the constitutively active Ras64B suggests that Ras64B presumably functions downstream of Caps. All these results suggest consistently that the small GTPase Ras64B binds specifically to the Caps intracellular domain and may thereby mediate the guidance function of Caps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to produce a variety of fluorescent diatom cell wall material as a basis for spectroscopic investigations of the influence of the photonic structure on the emission of an incorporated laser dye. This goal was achieved by the method of in vivo-fluorochromation, in which the fluorescence dyes are incorporated by the diatom cells during cell wall formation. Several fluorescent dyes (mostly rhodamines) known as strong laser dyes, were tested for a possible application within this method. The results of this work show that half of the tested rhodamines can be applied for an in vivo-fluorochromation of diatom cells. For a successful incorporation into the diatom cell wall, a relatively low toxicity to diatom cells is necessary. Replacement of the carbon acid function at the carboxyphenyl ring of the rhodamine by a methyl or ethylester function showed to convert a rhodamine of relatively low toxicity to a rhodamine leading to severe lethal effects within the cells. In contrast to their carbon acid forms, which posses a net neutral charge of the molecule, rhodamine esters exhibit a net positive charge. The enhanced toxicological effects seem to be due to an increased accumulation of positive charged rhodamines within the mitochondria, an increased hydrophobicity due to the attachment of an alkyl substituent, an increased retention time of the dyes within the mitochondria and a therefore stronger negative effect on the mitochondrial membrane bound energy processes of the diatom cell. Therefore rhodamines with a positive net charge deriving from a methyl or ethylester function at the carboxy phenyl ring instead of a carbon acid substituent showed not to be suitable for long-term investigations/ biomineralization studies of diatoms. Investigations performed on diatom species of different orders showed that rhodamine 19, rhodamine B, and rhodamine 101 can presumably be successfully applied for in vivo-fluorochromation to all diatom species. The results obtained here can help to find further laser dyes for an in vivo-fluorochromation of diatom cells and therefore for the production of fluorescent nanostructural elements for a detailed optical investigation of the diatom cell wall. First optical measurements performed on in vivo-fluorochromated cell walls did not give any hints concerning the photonic structure of the diatom cell. Cell wall parts with different nanostructural elements were investigated and by comparison of the obtained fluorescence emission spectra, no special features that might derive from photonic structural effects could be observed. Results concerning the concentration dependent shifts within the emission spectra, as well as the decrease of fluorescence intensity of the stained cell wall structures with increasing dye concentration, depict that several effects occurring by interaction of the molecules within the cell wall can have an impact on the technical application of fluorescent cell walls. It can be assumed that the investigation of the photonic crystal behaviour and the possibility to achieve laser action within the diatom cell wall can be hampered by molecular interactions. The results give hints to prevent such obstacles. Comparison of the recent findings and state of the art of in vivo-fluorochromation of diatom cell wall material, make clear that the here presented results are of importance and can offer a considerable contribution to the development and establishment of new biosilification markers, for diatoms as well as for other biosilifying organisms.