1 resultado para down regulation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
By the end of the first day of embryonic development, zebrafish primordial germ cells (PGCs) arrive at the site where the gonad develops. In our study we investigated the mechanisms controlling the precision of primordial germ cell arrival at their target. We found that in contrast with our expectations which were based on findings in Drosophila and mouse, the endoderm does not constitute a preferred migration substrate for the PGCs. Rather, endoderm derivatives are important for later stages of organogenesis keeping the PGC clusters separated. It would be interesting to investigate the precise mechanism by which endoderm controls germ cell position in the gonad. In their migration towards the gonad, zebrafish germ cells follow the gradient of chemokine SDF-1a, which they detect using the receptor CXCR4b that is expressed on their membrane. Here we show that the C-terminal region of CXCR4b is responsible for down-regulation of receptor activity as well as for receptor internalization. We demonstrate that receptor molecules unable to internalize are less potent in guiding germ cells to the site where the gonad develops, thereby implicating chemokine receptor internalization in facilitating precision of migration during chemotaxis in vivo. We demonstrate that while CXCR4b activity positively regulates the duration of the active migration phases, the down-regulation of CXCR4b signalling by internalization limits the duration of this phase. This way, receptor signalling contributes to the persistence of germ cell migration, whereas receptor down-regulation enables the cells to stop and correct their migration path close to the target where germ cells encounter the highest chemokine signal. Chemokine receptors are involved in directing cell migration in different processes such as lymphocyte trafficking, cancer and in the development of the vascular system. The C-terminal domain of many chemokine receptors was shown to be essential for controlling receptor signalling and internalization. It would therefore be important to determine whether the role for receptor internalization in vivo as described here (allowing periodical corrections to the migration route) and the mechanisms involved (reducing the level of signalling) apply for those other events, too.