3 resultados para dimer interface

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Singularities of elastic and electric fields are investigated at the tip of a crack on the interface of two anisotropic piezo-electric media under various boundary conditions on the crack surfaces. The Griffith formulae are obtained for increments of energy functionals due to growth of the crack and the notion of the energy release matrix is introduced. Normalization conditions for bases of singular solution are proposed to adapt them to the energy, stress, and deformation fracture criteria. Connections between these bases are determined and additional properties of the deformation basis related to the notion of electric surface enthalpy are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presentation at the 1997 Dagstuhl Seminar "Evaluation of Multimedia Information Retrieval", Norbert Fuhr, Keith van Rijsbergen, Alan F. Smeaton (eds.), Dagstuhl Seminar Report 175, 14.04. - 18.04.97 (9716). - Abstract: This presentation will introduce ESCHER, a database editor which supports visualization in non-standard applications in engineering, science, tourism and the entertainment industry. It was originally based on the extended nested relational data model and is currently extended to include object-relational properties like inheritance, object types, integrity constraints and methods. It serves as a research platform into areas such as multimedia and visual information systems, QBE-like queries, computer-supported concurrent work (CSCW) and novel storage techniques. In its role as a Visual Information System, a database editor must support browsing and navigation. ESCHER provides this access to data by means of so called fingers. They generalize the cursor paradigm in graphical and text editors. On the graphical display, a finger is reflected by a colored area which corresponds to the object a finger is currently pointing at. In a table more than one finger may point to objects, one of which is the active finger and is used for navigating through the table. The talk will mostly concentrate on giving examples for this type of navigation and will discuss some of the architectural needs for fast object traversal and display. ESCHER is available as public domain software from our ftp site in Kassel. The portable C source can be easily compiled for any machine running UNIX and OSF/Motif, in particular our working environments IBM RS/6000 and Intel-based LINUX systems. A porting to Tcl/Tk is under way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic GMP-dependent protein kinase (PKG) is a key transducer in the NO-cGMP signaling pathway. In this line, PKG has been considered an important drug target for treating hypertensive cardiovascular and pulmonary diseases. However, the investigation of PKG’s allosteric activation mechanism has been hampered by a lack of structural information. One of the fundamental questions on the cGMP-dependent activation of PKG is how the enzyme can distinguish cGMP over cAMP and selectively respond to cGMP. To ensure proper signaling, PKG must have developed unique features to ensure its activation upon the right activation signal. In this thesis, the cGMP-selective activation mechanism of PKG was studied through determining crystal structures of three truncated constructs of the regulatory domain [CNB-A (92-227), CNB-B (271-369), and CNB-A/B (92-351)] of PKG Iβ in the absence or presence of cyclic nucleotides. Herein, two individual CNB domain structures with biochemical data revealed that the C-terminal CNB domain (CNB-B) is responsible for cGMP selectivity, while the N-terminal CNB-domain (CNB-A) has a higher binding affinity for both cGMP and cAMP without showing any selectivity. Based on these crystal structures, mutagenesis studies were performed in which the critical residues for cyclic nucleotide selectivity and activation were identified. Furthermore, we discovered that the conformational changes of the C-terminal helix of the CNB-B that bridges between the regulatory and catalytic domains including the hydrophobic capping interaction are crucial for PKG activation. In addition, to observe the global conformation of the activated R-domain, I solved a co-crystal structure of the CNB-A/B with cGMP. Although a monomeric construct was crystallized, the structure displays a dimer. Strikingly, the CNB-A domain and its bound cGMP provide a key interface for this dimeric interaction. Using small angle X-ray scattering (SAXS), the existence of the cGMP-mediated dimeric interface within the CNB domains was confirmed. Furthermore, measuring cGMP-binding affinities (EC50) of the dimeric interface mutants as well as determining activation constants (Ka) revealed that the interface formation is important for PKG activation. To conclude, this thesis study provides a new mechanistic insight in PKG activation along with a newly found interface that can be targeted for designing PKG-specific activity modulators.