32 resultados para ddc: 510
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
The aim of this paper is the investigation of the error which results from the method of approximate approximations applied to functions defined on compact in- tervals, only. This method, which is based on an approximate partition of unity, was introduced by V. Mazya in 1991 and has mainly been used for functions defied on the whole space up to now. For the treatment of differential equations and boundary integral equations, however, an efficient approximation procedure on compact intervals is needed. In the present paper we apply the method of approximate approximations to functions which are defined on compact intervals. In contrast to the whole space case here a truncation error has to be controlled in addition. For the resulting total error pointwise estimates and L1-estimates are given, where all the constants are determined explicitly.
Resumo:
In der vorliegenden Arbeit 1 wird ein neues, erweiter- und konfigurierbares Visualisierungsverfahren zur Interaktion mit komplex strukturierten Datenobjekten vorgestellt. Die Erweiterbarkeit bezieht sich dabei auf die vom Verfahren einsetzbaren Techniken der Visualisierung (Visualisierungsfunktionen) und auf die in das Verfahren integrierte Interaktion. Die mit dem Verfahren generierbaren Repräsentationen sind besonders zum Browsen in den Objekten und zum Editieren der Objekte geeignet, die typischerweise in objekt-relationalen Datenbanken gespeichert werden. Die generierten Repräsentationen können modulartig in vorhandene graphische Benutzerschnittstellen integriert werden oder als vollständige graphische Benutzerschnittstelle einer Anwendung eingesetzt werden. Modularität und Orthogonalität, also die sinnvolle Aufteilung in Funktionseinheiten und die Möglichkeit, Methoden einer Komponente auf andere Komponenten anzuwenden, werden als Mittel eingesetzt, mit weniger Komponenten mehr Funktionalität zu erreichen. Für den Teilaspekt der Benutzerschnittstelle wurde dies durch Visualisierungsvorschriften für Datenobjekte (Relationen, Tabellen) vorgeschlagen, indem ein Baum aus der Strukturdefinition (Schema) abgeleitet und als persistentes (Meta-) Datenobjekt in der Datenbank gespeichert wird. Sie werden kurz "Visualisierungen" genannt. Wie gezeigt werden kann, sind sechs Meta-Objekte die notwendige und hinreichende Anzahl und Ausprägung von Schemata und Visualisierungen zur Definition und visuellen Repräsentation beliebiger Anwendungs-Objekte (Schemata und durch sie definierte Tabellen), inklusive ihrer eigenen Schemata und Visualisierungen. Der Einsatz der Selbstreferenzierung mit Meta-Objekten hat zu mehr Sicherheit und Kompaktheit ohne nenneswerte Laufzeiteinbußen geführt.
Resumo:
The Bieberbach conjecture about the coefficients of univalent functions of the unit disk was formulated by Ludwig Bieberbach in 1916 [Bieberbach1916]. The conjecture states that the coefficients of univalent functions are majorized by those of the Koebe function which maps the unit disk onto a radially slit plane. The Bieberbach conjecture was quite a difficult problem, and it was surprisingly proved by Louis de Branges in 1984 [deBranges1985] when some experts were rather trying to disprove it. It turned out that an inequality of Askey and Gasper [AskeyGasper1976] about certain hypergeometric functions played a crucial role in de Branges' proof. In this article I describe the historical development of the conjecture and the main ideas that led to the proof. The proof of Lenard Weinstein (1991) [Weinstein1991] follows, and it is shown how the two proofs are interrelated. Both proofs depend on polynomial systems that are directly related with the Koebe function. At this point algorithms of computer algebra come into the play, and computer demonstrations are given that show how important parts of the proofs can be automated.
Resumo:
In this paper we champion Diophantus of Alexandria and Isabella Basmakova against Norbert Schappacher. In two publications ([46] and [47]) he puts forward inter alia two propositions: Questioning Diophantus' originality he considers affirmatively the possibility, that the Arithmetica are the joint work of a team of authors like Bourbaki. And he calls Basmakova's claim (in [5]), that Diophantus uses negative numbers, a "nonsense", reproaching her for her "thoughtlessness". First, we disprove Schappacher's Bourbaki thesis. Second, we investigate the semantic meaning and historical significance of Diophantus' keywords leipsis and mparxis. Next, we discuss Schappacher's epistemology of the history of mathematics and defend Basmakova's methods. Furthermore, we give 33 places where Diophantus uses negative quantities as intermediate results; they appear as differences a - b of positive rational numbers, the subtrahend b being bigger than the minuend a; they each represent the (negative) basis (pleyra) of a square number (tetragonos), which is afterwards computed by the formula (a - b)^2 = a^2 + b^2 - 2ab. Finally, we report how the topic "Diophantus and the negative numbers" has been dealt with by translators and commentators from Maximus Planudes onwards.
Resumo:
In this work, we present a generic formula for the polynomial solution families of the well-known differential equation of hypergeometric type s(x)y"n(x) + t(x)y'n(x) - lnyn(x) = 0 and show that all the three classical orthogonal polynomial families as well as three finite orthogonal polynomial families, extracted from this equation, can be identified as special cases of this derived polynomial sequence. Some general properties of this sequence are also given.
Resumo:
We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.
Resumo:
Bei frühgeborenen Säuglingen spielt die Thermoregulation zur Aufrechterhaltung einer überlebenswichtigen Körpertemperatur durch Wärmeproduktion, -abgabe bzw. -aufnahme eine entscheidende Rolle. Der Einsatz moderner Inkubatoren soll die körpereigenen Thermoregulatoren unterstützen, und es ist im Hinblick auf verschiedene medizinische Fragestellungen wünschenswert, diesen Prozess modellieren zu können. Wir stellen ein einfaches Modell auf der Basis von partiellen Differentialgleichungen vor und beschreiben detailliert die numerische Simulation mit Hilfe einer Finite-Volumen-Methode. Dazu wird ein zweidimensionales Modell eines Frühgeborenen trianguliert und das Modell diskretisiert. Zahlreiche numerische Resultate zeigen die Qualität unseres Modells.
Resumo:
Artificial boundary conditions are presented to approximate solutions to Stokes- and Navier-Stokes problems in domains that are layer-like at infinity. Based on results about existence and asymptotics of the solutions v^infinity, p^infinity to the problems in the unbounded domain Omega the error v^infinity - v^R, p^infinity - p^R is estimated in H^1(Omega_R) and L^2(Omega_R), respectively. Here v^R, p^R are the approximating solutions on the truncated domain Omega_R, the parameter R controls the exhausting of Omega. The artificial boundary conditions involve the Steklov-Poincare operator on a circle together with its inverse and thus turn out to be a combination of local and nonlocal boundary operators. Depending on the asymptotic decay of the data of the problems, in the linear case the error vanishes of order O(R^{-N}), where N can be arbitrarily large.
Resumo:
Singularities of elastic and electric fields are investigated at the tip of a crack on the interface of two anisotropic piezo-electric media under various boundary conditions on the crack surfaces. The Griffith formulae are obtained for increments of energy functionals due to growth of the crack and the notion of the energy release matrix is introduced. Normalization conditions for bases of singular solution are proposed to adapt them to the energy, stress, and deformation fracture criteria. Connections between these bases are determined and additional properties of the deformation basis related to the notion of electric surface enthalpy are established.
Resumo:
The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.
Resumo:
We study the asymptotics conjecture of Malle for dihedral groups Dl of order 2l, where l is an odd prime. We prove the expected lower bound for those groups. For the upper bounds we show that there is a connection to class groups of quadratic number fields. The asymptotic behavior of those class groups is predicted by the Cohen-Lenstra heuristics. Under the assumption of this heuristic we are able to prove the expected upper bounds.
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
Let k be a quadratic imaginary field, p a prime which splits in k/Q and does not divide the class number hk of k. Let L denote a finite abelian extention of k and let K be a subextention of L/k. In this article we prove the p-part of the Equivariant Tamagawa Number Conjecture for the pair (h0(Spec(L)),Z[Gal(L/K)]).
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.