11 resultados para cytoplasm vesicle
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
During synaptic transmission, NT-filled synaptic vesicles are released by Ca2+-triggered exocytosis at the active zone. Following exocytosis, SV membrane is immediately re-internalized and synaptic vesicles (SVs) are regenerated by a local recycling mechanism within the presynaptic terminal. It is debated whether an endosomal compartment is involved in this recycling process. In contrast, it is well known from cultured mammalian cells, that endocytic vesicles fuse to the early sorting endosome. The early endosome is a major sorting station of the cell where cargo is send into the degradative pathway to late endosome and lysosome or towards recycling. Each trafficking step is mediated by a certain protein of the Rab family. Rab proteins are small GTPases belonging to the Ras superfamily. They accumulate at their target compartments and have thereby been used as markers for the different endocytic organelles in cultured mammalian cells. Rab5 controls trafficking from the PM to the early endosome and has thereby been used as marker for this compartment. A second marker is based on the specific binding of the FYVE zinc finger protein domain to the lipid PI(3)P that is specifically generated at the early endosomal membrane. This study used the Drosophila NMJ as a model system to investigate the SV recycling process. In particular, three questions were addressed: First, is an endosomal compartment present at the synapse? Second, do SVs recycle through an endosome? Third, is Rab5 involved in SV recycling? We used GFP fusions of Rab5 and 2xFYVE to visualize endosomal compartments at the presynaptic terminal of Drosophila third instar larval NMJs. Furthermore, the endosomes are located within the pool of recycling SVs, labeled with the styryl-dye FM5-95. Using the temperature-sensitive mutation in Dynamin, shibirets, we showed that SV recycling involves trafficking through an intermediate endosomal compartment. In cultured mammalian cells, interfering with Rab5 function by expressing the dominant negative version, Rab5SN causes the fragmentation of the endosome and the accumulation of endocytic vesicles. In contrast, when Rab5 is overexpressed enlarged endosomal compartments were observed. In Drosophila, the endosomal compartment was disrupted when loss of function and dominant negative mutants of Rab5 were expressed. In addition, at the ultrastructural we observed an accumulation of endocytic vesicles in Rab5S43N expressing terminals and enlarged endosomes when Rab5 was overexpressed. Furthermore, interfering with Rab5 function using the dominant negative Rab5S43N caused a decrease in the SV recycling kinetics as shown by FM1-43 experiments. In contrast, overexpression of Rab5 or GFP-Rab5 caused an increase in the FM1-43 internalization rate. Finally, standard electrophysiological techniques were used to measure synaptic function. We found that the Rab5-mediated endosomal SV recycling pathway generates vesicles with a higher fusion efficacy during Ca2+-triggered release, compared to SVs recycled when Rab5 function was impaired. We therefore suggest a model in which the endosome serves as organelle to control the SV fusion efficacy and thereby the synaptic strength. Since changes in the synaptic strength are occuring during learning and memory processes, controlling endosomal SV recycling might be a new molecular mechanism involved in learning and memory.
Resumo:
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles’ motion underneath plasma membranes is not purely random, but biased towards the membrane.
Resumo:
Ähnlich wie in Säugerzellen ist das neutrale Postlysosom in Dictyostelium discoideum von einem Coat aus filamentösem Actin umgeben. In dieser Arbeit wurde der Frage nach der Funktion dieses Actin-Cytoskeletts am späten Endosom nachgegangen. Hierzu wurde zunächst eine Analyse der Domänen des Vacuolin B durchgeführt, das als bisher spätester bekannter Marker im Endocytoseweg in Dictyostelium discoideum das neutrale, postlysosomale Kompartiment dekoriert. In einer Yeast Two Hybrid-Analyse wurden die Bereiche des Vacuolin B identifiziert, die für eine Selbst-Interaktion des Proteins notwendig und ausreichend sind. Es handelt sich dabei um die coiled-coil-Domäne und einen daran anschließenden, 18 Aminosäuren langen, alpha-helicalen Abschnitt. Diesem helicalen Bereich scheint die Funktion einer modifizierenden, die coiled-coil-Ausbildung vermittelnden oder initiierenden Faltungseinheit zuzukommen. Sie weist jedoch nicht die typischen Merkmale einer trigger-Helix auf. Lokalisationsuntersuchungen mit GFP-Deletionskonstrukten zeigten, dass es einen Zusammenhang zwischen Interaktionsfähigkeit und Bindung des Vacuolin an die Oberfläche später Endosomen gibt: Eine korrekte Lokalisation und Membranassoziation waren nur dann zu beobachten, wenn in der Yeast Two Hybrid-Analyse eine Interaktion nachgewiesen werden konnte. Es wurden die für die Lokalisation und Assoziation mit der vacuolären Membran notwendigen Sequenzbereiche identifiziert; diese waren jedoch nicht hinreichend. Vermutlich sind hierfür auch Sequenzen des N-Terminus notwendig. Die erhobenen Daten legen weiterhin eine Bedeutung der hydrophoben Domäne des Vacuolin B für die korrekte Faltung des Proteins nahe. Im Anschluss an die Domänenanalyse wurde Vacuolin dazu benutzt, durch Herstellung von Hybridproteinen Actin-interagierende Proteine gezielt an das späte Endosom zu transportieren. Es wurde deren Einfluss auf den lokalen Actin Coat und den endocytotischen Transit untersucht. Zwei Actin-bindende Proteine mit depolymerisierender Wirkung konnten im Rahmen dieser Arbeit getestet werden, nämlich Severin und Cofilin. Die Schwächung des lokalen Actin Coats durch das Vorhandensein von Severin an der späten Vacuole war nicht eindeutig festzustellen. Severin am Postlysosom führte nicht zu einer Veränderung der Transitkinetik von Flüssigphasenmarker. Allerdings konnte ein Defekt in der Phagocytose festgestellt werden. Es könnte hierbei ein Zusammenhang zwischen der Mobilisierung von intrazellulärem Calcium während der Partikelaufnahme und der Calcium-abhängigen Regulation der Severin-Aktivität bestehen. Das Hybridprotein aus Vacuolin und Cofilin zeigte neben einer Assoziation mit der vacuolären Membran auch eine Lokalisation im Cytoplasma und Cortex der Zellen. Mit der Lokalisation im Cytoplasma und Cortex korrelierte eine Veränderung der endocytotischen Aktivität. Das Vacuolin-Cofilin-Fusionsprotein am Postlysosom rief einen Verlust des lokalen Actin Coats hervor. Dies führte zu einer traubenförmigen Assoziation der späten Endosomen; exocytotische Parameter blieben jedoch unbeeinflusst. Aufgrund der hier erhobenen Daten kann vermutet werden, dass der Actin Coat am Postlysosom dazu dient, eine Agglutination dieser Endosomen zu inhibieren. Dies könnte ein Schutzmechanismus zum Ausschluss von Docking- und Fusionsereignissen sein.
Resumo:
"Funktionelle Analyse der LC-FACS in Dictyostelium discoideum" Das Dictyostelium discoideum Gen fcsA kodiert für ein 75 kDa großes Protein. Es kann durch Homologieanyalysen der Amino-säuresequenz zu den "long-chain fatty acyl-CoA"-Synthetasen ge-rechnet werden, die lang-kettige Fettsäuren durch die kovalente Bindung von Coenzym A akti-vie-ren und damit für diverse Reak-tionen in Stoffwechsel und Molekül-Synthese der Zelle verfügbar machen. Die hier untersuchte D. discoideum LC-FACS lokalisiert als peripher assoziiertes Protein an der cytosolischen Seite der Membran von Endo-somen und kleiner Vesikel. Bereits kurz nach der Bildung in der frühen sauren Phase kann die Lokalisation der LC-FACS auf Endosomen ge-zeigt werden. Sie dissoziiert im Laufe ihrer Neutra-li-sierung und kann auf späten Endosomen, die vor ihrer Exocytose stehen nicht mehr nach-gewiesen werden. Ein Teil der kleinen die in der gesamte Zelle verteilten kleinen Vesikel zeigt eine Kolokalisation mit lysosomalen Enzymen. Trotz des intrazellulären Verteilungs-mus-ters, das eine Beteiligung dieses Pro-teins an der Endocytose nahe-legt, konnte kein signifikanter Rückgang der Pino- und Phagocytose-Rate in LC-FACS Nullmutanten beobachtet werden. Der endo-cy-to-ti-sche Transit ist in diesen Zellen etwas verlängert, außerdem zeigen die Endosomen einen deutlich erhöhten pH-Wert, was zu einer weniger effektiven Prozessierung eines lysosomalen Enzyms führt (a-Mannosidase). Die Funktion der LC-FACS ist die Aufnahme von langkettigen Fettsäuren aus dem Lumen der Endosomen.
Resumo:
With molecular biology methods and bioinformatics, the Argonaute proteins in Dictyostelium discoideum were characterized, and the function of the AgnA protein in RNAi and DNA methylation was investigated, as well as cellular features. Also interaction partners of the PAZ-Piwi domain of AgnA (PAZ-PiwiAgnA) were discovered. The Dictyostelium genome encodes five Argonaute proteins, termed AgnA/B/C/D/E. The expression level of Argonaute proteins was AgnB/D/E > AgnA > AgnC. All these proteins contain the characteristic conserved of PAZ and Piwi domains. Fluorescence microscopy revealed that the overexpressed C-terminal GFP-fusion of PAZ-PiwiAgnA (PPWa-GFP) localized to the cytoplasm. Overexpression of PPWa-GFP leaded to an increased gene silencing efficiency mediated by RNAi but not by antisense RNA. This indicated that PAZ-PiwiAgnA is involved in the RNAi pathway, but not in the antisense pathway. An analysis of protein-protein interactions by a yeast-two-hybrid screen on a cDNA library from vegetatively grown Dictyostelium revealed that several proteins, such as EF2, EF1-I, IfdA, SahA, SamS, RANBP1, UAE1, CapA, and GpdA could interact with PAZ-PiwiAgnA. There was no interaction between PAZ-PiwiAgnA and HP1, HelF and DnmA detected by direct yeast-two-hybrid analysis. The fluorescence microscopy images showed that the overexpressed GFP-SahA or IfdA fusion proteins localized to both cytoplasm and nuclei, while the overexpressed GFP-SamS localized to the cytoplasm. The expression of SamS in AgnA knock down mutants was strongly down regulated on cDNA and mRNA level in, while the expression of SahA was only slightly down regulated. AgnA knock down mutants displayed defects in growth and phagocytosis, which suggested that AgnA affects also cell biological features. The inhibition of DNA methylation on DIRS-1 and Skipper retroelements, as well as the endogenous mvpB and telA gene, observed for the same strains, revealed that AgnA is involved in the DNA methylation pathway. Northern blot analysis showed that Skipper and DIRS-1 were rarely expressed in Ax2, but the expression of Skipper was upregulated in AgnA knock down mutants, while the expression of DIRS-1 was not changed. A knock out of the agnA gene failed even though the homologous recombination of the disruption construct occurred at the correct site, which indicated that there was a duplication of the agnA gene in the genome. The same phenomenon was also observed in ifdA knock out experiments.
Resumo:
In zebrafish, germ cells are responsible for transmitting the genetic information from one generation to the next. During the first cleavages of zebrafish embryonic development, a specialized part of the cytoplasm known as germ plasm, is responsible of committing four blastomeres to become the progenitors of all germ cells in the forming embryo. Much is known about how the germ plasm is spatially distributed in early stages of primordial germ cell development, a process described to be dependant on microtubules and actin. However, little is known about how the material is inherited after it reorganizes into a perinuclear location, or how is the symmetrical distribution regulated in order to ensure proper inheritance of the material by both daughter cells. It is also not clear whether there is a controlled mechanism that regulates the number of granules inherited by the daughter cells, or whether it is a random process. We describe the distribution of germ plasm material from 4hpf to 24hpf in zebrafish primordial germ cells using Vasa protein as marker. Vasa positive material appears to be conglomerate into 3 to 4 big spherical structures at 4hpf. While development progresses, these big structures become smaller perinuclear granules that reach a total number of approximately 30 at 24hpf. We investigated how this transformation occurs and how the minus-end microtubule dependent motor protein Dynein plays a role in this process. Additionally, we describe specific colocalization of microtubules and perinuclear granules during interphase and more interestingly, during all different stages of cell division. We show that distribution of granules follow what seems to be a regulated distribution: during cells division, daughter cells inherit an equal number of granules. We propose that due to the permanent colocalization of microtubular structures with germinal granules during interphase and cell division, a coordinated mechanism between these structures may ensure proper distribution of the material among daughter cells. Furthermore, we show that exposure to the microtubule-depolymerizing drug nocodazole leads to disassembly of the germ cell nuclear lamin matrix, chromatin condensation, and fusion of granules to a big conglomerate, revealing dependence of granular distribution on microtubules and proper nuclear structure.
Resumo:
The present Thesis looks at the problem of protein folding using Monte Carlo and Langevin simulations, three topics in protein folding have been studied: 1) the effect of confining potential barriers, 2) the effect of a static external field and 3) the design of amino acid sequences which fold in a short time and which have a stable native state (global minimum). Regarding the first topic, we studied the confinement of a small protein of 16 amino acids known as 1NJ0 (PDB code) which has a beta-sheet structure as a native state. The confinement of proteins occurs frequently in the cell environment. Some molecules called Chaperones, present in the cytoplasm, capture the unfolded proteins in their interior and avoid the formation of aggregates and misfolded proteins. This mechanism of confinement mediated by Chaperones is not yet well understood. In the present work we considered two kinds of potential barriers which try to mimic the confinement induced by a Chaperon molecule. The first kind of potential was a purely repulsive barrier whose only effect is to create a cavity where the protein folds up correctly. The second kind of potential was a barrier which includes both attractive and repulsive effects. We performed Wang-Landau simulations to calculate the thermodynamical properties of 1NJ0. From the free energy landscape plot we found that 1NJ0 has two intermediate states in the bulk (without confinement) which are clearly separated from the native and the unfolded states. For the case of the purely repulsive barrier we found that the intermediate states get closer to each other in the free energy landscape plot and eventually they collapse into a single intermediate state. The unfolded state is more compact, compared to that in the bulk, as the size of the barrier decreases. For an attractive barrier modifications of the states (native, unfolded and intermediates) are observed depending on the degree of attraction between the protein and the walls of the barrier. The strength of the attraction is measured by the parameter $\epsilon$. A purely repulsive barrier is obtained for $\epsilon=0$ and a purely attractive barrier for $\epsilon=1$. The states are changed slightly for magnitudes of the attraction up to $\epsilon=0.4$. The disappearance of the intermediate states of 1NJ0 is already observed for $\epsilon =0.6$. A very high attractive barrier ($\epsilon \sim 1.0$) produces a completely denatured state. In the second topic of this Thesis we dealt with the interaction of a protein with an external electric field. We demonstrated by means of computer simulations, specifically by using the Wang-Landau algorithm, that the folded, unfolded, and intermediate states can be modified by means of a field. We have found that an external field can induce several modifications in the thermodynamics of these states: for relatively low magnitudes of the field ($<2.06 \times 10^8$ V/m) no major changes in the states are observed. However, for higher magnitudes than ($6.19 \times 10^8$ V/m) one observes the appearance of a new native state which exhibits a helix-like structure. In contrast, the original native state is a $\beta$-sheet structure. In the new native state all the dipoles in the backbone structure are aligned parallel to the field. The design of amino acid sequences constitutes the third topic of the present work. We have tested the Rate of Convergence criterion proposed by D. Gridnev and M. Garcia ({\it work unpublished}). We applied it to the study of off-lattice models. The Rate of Convergence criterion is used to decide if a certain sequence will fold up correctly within a relatively short time. Before the present work, the common way to decide if a certain sequence was a good/bad folder was by performing the whole dynamics until the sequence got its native state (if it existed), or by studying the curvature of the potential energy surface. There are some difficulties in the last two approaches. In the first approach, performing the complete dynamics for hundreds of sequences is a rather challenging task because of the CPU time needed. In the second approach, calculating the curvature of the potential energy surface is possible only for very smooth surfaces. The Rate of Convergence criterion seems to avoid the previous difficulties. With this criterion one does not need to perform the complete dynamics to find the good and bad sequences. Also, the criterion does not depend on the kind of force field used and therefore it can be used even for very rugged energy surfaces.
Resumo:
Eukaryotic DNA m5C methyltransferases (MTases) play a major role in many epigenetic regulatory processes like genomic imprinting, X-chromosome inactivation, silencing of transposons and gene expression. Members of the two DNA m5C MTase families, Dnmt1 and Dnmt3, are relatively well studied and many details of their biological functions, biochemical properties as well as interaction partners are known. In contrast, the biological functions of the highly conserved Dnmt2 family, which appear to have non-canonical dual substrate specificity, remain enigmatic despite the efforts of many researchers. The genome of the social amoeba Dictyostelium encodes Dnmt2-homolog, the DnmA, as the only DNA m5C MTase which allowed us to study Dnmt2 function in this organism without interference by the other enzymes. The dnmA gene can be easily disrupted but the knock-out clones did not show obvious phenotypes under normal lab conditions, suggesting that the function of DnmA is not vital for the organism. It appears that the dnmA gene has a low expression profile during vegetative growth and is only 5-fold upregulated during development. Fluorescence microscopy indicated that DnmA-GFP fusions were distributed between both the nucleus and cytoplasm with some enrichment in nuclei. Interestingly, the experiments showed specific dynamics of DnmA-GFP distribution during the cell cycle. The proteins colocalized with DNA in the interphase and were mainly removed from nuclei during mitosis. DnmA functions as an active DNA m5C MTase in vivo and is responsible for weak but detectable DNA methylation of several regions in the Dictyostelium genome. Nevertheless, gel retardation assays showed only slightly higher affinity of the enzyme to dsDNA compared to ssDNA and no specificity towards various sequence contexts, although weak but detectable specificity towards AT-rich sequences was observed. This could be due to intrinsic curvature of such sequences. Furthermore, DnmA did not show denaturant-resistant covalent complexes with dsDNA in vitro, although it could form covalent adducts with ssDNA. Low binding and methyltransfer activity in vitro suggest the necessity of additional factor in DnmA function. Nevertheless, no candidates could be identified in affinity purification experiments with different tagged DnmA fusions. In this respect, it should be noted that tagged DnmA fusion preparations from Dictyostelium showed somewhat higher activity in both covalent adduct formation and methylation assays than DnmA expressed in E.coli. Thus, the presence of co-purified factors cannot be excluded. The low efficiency of complex formation by the recombinant enzyme and the failure to define interacting proteins that could be required for DNA methylation in vivo, brought up the assumption that post-translational modifications could influence target recognition and enzymatic activity. Indeed, sites of phosphorylation, methylation and acetylation were identified within the target recognition domain (TRD) of DnmA by mass spectrometry. For phosphorylation, the combination of MS data and bioinformatic analysis revealed that some of the sites could well be targets for specific kinases in vivo. Preliminary 3D modeling of DnmA protein based on homology with hDNMT2 allowed us to show that several identified phosphorylation sites located on the surface of the molecule, where they would be available for kinases. The presence of modifications almost solely within the TRD domain of DnmA could potentially modulate the mode of its interaction with the target nucleic acids. DnmA was able to form denaturant-resistant covalent intermediates with several Dictyostelium tRNAs, using as a target C38 in the anticodon loop. The formation of complexes not always correlated with the data from methylation assays, and seemed to be dependent on both sequence and structure of the tRNA substrate. The pattern, previously suggested by the Helm group for optimal methyltransferase activity of hDNMT2, appeared to contribute significantly in the formation of covalent adducts but was not the only feature of the substrate required for DnmA and hDNMT2 functions. Both enzymes required Mg2+ to form covalent complexes, which indicated that the specific structure of the target tRNA was indispensable. The dynamics of covalent adduct accumulation was different for DnmA and different tRNAs. Interestingly, the profiles of covalent adduct accumulation for different tRNAs were somewhat similar for DnmA and hDNMT2 enzymes. According to the proposed catalytic mechanism for DNA m5C MTases, the observed denaturant-resistant complexes corresponded to covalent enamine intermediates. The apparent discrepancies in the data from covalent complex formation and methylation assays may be interpreted by the possibility of alternative pathways of the catalytic mechanism, leading not to methylation but to exchange or demethylation reactions. The reversibility of enamine intermediate formation should also be considered. Curiously, native gel retardation assays showed no or little difference in binding affinities of DnmA to different RNA substrates and thus the absence of specificity in the initial enzyme binding. The meaning of the tRNA methylation as well as identification of novel RNA substrates in vivo should be the aim of further experiments.
Resumo:
The soil amoebae Dictyostelium discoideum take up particles from their environment in order to obtain nutrition. The particle transits through the cell within a phagosome that fuses with organelles of different molecular compositions, undergoing a gradual degradation by different sets of hydrolytic enzymes. Griffiths’ concept of “phagosome individuality” predicts signaling from phagosomes into the cytoplasm, which might regulate many aspects of cell physiology. The finding that Dictyostelium cells depleted of the lysozyme AlyA or over-expressing the esterase Gp70 exhibit increased uptake of food particles, led to the postulation of a signaling cascade between endocytic compartments and the cytoskeletal uptake machinery at the plasma membrane. Assuming that Gp70 acts downstream of AlyA, gene-expression profiling of both mutants revealed different and overlapping sets of misregulated genes that might participate in this signaling cascade. Based on these results, we analyzed the effects of the artificial misregulation of six candidate genes by over-expression or negative genetic interference, in order to reconstruct at least part of the signaling pathway. SSB420 and SSL793 were chosen as candidates for the first signaling step, as they were up-regulated in AlyA-null cells and remained unaltered in the Gp70 over-expressing cells. The over-expression of SSB420 enhanced phagocytosis and raised the expression levels of Gp70, supporting its involvement in the signaling pathway between AlyA and Gp70 as a positive regulator of phagocytosis. However, this was not the case of cells over-expressing SSL793, as this mutation had no effects on phagocytosis. For the signaling downstream of Gp70, we studied four commonly misregulated genes in AlyA-depleted and Gp70 over-expressing cells. The expression levels of SLB350, SSB389 and TipD were lower in both mutants and therefore these were assumed as possible candidates for the negative regulation of phagocytosis. Cells depleted of SLB350 exhibited an increased phagocytic activity and no effect on Gp70 expression, proving its participation in the signaling pathway downstream of Gp70. Unlike SLB350, the disruption of the genes coding for SSB389 and TipD had no effects on particle uptake, excluding them from the pathway. The fourth candidate was Yipf1, the only gene that was commonly up-regulated in both mutants. Yet, the artificial over-expression of this protein had no effects on phagocytosis, so this candidate is also not included in the signaling pathway. Furthermore, localizing the products of the candidate genes within the cell helped unveiling several cellular organelles that receive signals from the phagosome and transduce them towards the uptake machinery.
Resumo:
This thesis describes several important advancements in the understanding of the assembly of outer membrane proteins of Gram-negative bacteria like Escherichia coli. A first study was performed to identify binding regions in the trimeric chaperone Skp for outer membrane proteins. Skp is known to facilitate the passage of unfolded outer membrane proteins (OMPs) through the periplasm to the outer membrane (OM). A gene construct named “synthetic chaperone protein (scp)” gene was used to express a fusion protein (Scp) into the cytoplasm of E. coli. The scp gene was used as a template to design mutants of Scp suitable for structural and functional studies using site-directed spectroscopy. Fluorescence resonance energy transfer (FRET) was used to identify distances in Skp-OmpA complexes that separate regions in Scp and in outer membrane protein A (OmpA) from E. coli. For this study, single cysteine (Cys) mutants and single Cys - single tryptophan (Trp) double mutants of Scp were prepared. For FRET experiments, the cysteines were labeled with the tryptophan fluorescence energy acceptor IAEDANS. Single Trp mutants of OmpA were used as fluorescence energy donors. In the second part of this thesis, the function of BamD and the structure of BamD-Scp complexes were examined. BamD is an essential component of the β-barrel assembly machinery (BAM) complex of the OM of Gram-negative bacteria. Fluorescence spectroscopy was used to probe the interactions of BamD with lipid membranes and to investigate the interactions of BamD with possible partner proteins from the periplasm and from the OM. A range of single cysteine (Cys) and single tryptophan (Trp) mutants of BamD were prepared. A very important conclusion from the extensive FRET study is that the essential lipoprotein BamD interacts and binds to the periplasmic chaperone Skp. BamD contains tetratrico peptide repeat (TPR) motifs that are suggested to serve as docking sites for periplasmic chaperones such as Skp.
Resumo:
RNA mediated gene silencing pathways are highly conserved among eukaryotes and they have been well investigated in animals and in plants. Longer dsRNA molecules trigger the silencing pathways: RNase III proteins and their dsRNA binding protein (dsRBP) partners recognize those molecules as a substrate and process 21 nucleotide long microRNAs (miRNAs) or small interfering RNAs (siRNAs). Some organisms encode RNA dependent RNA polymerases (RdRPs), which are able to expand the pool of existing siRNAs. Argonaute proteins are able to bind small regulatory RNAs and are subsequently recruited to target mRNAs by base complementary. This leads in turn to transcriptional or posttranscriptional silencing of respective genes. The Dictyostelium discoideum genome encodes two Dicer homologues (DrnA and DrnB), five Argonaute proteins (AgnA to AgnE) and three RdRPs (RrpA to RrpC). In addition, the amoeba is known to express miRNAs and siRNAs, while the latter derive mainly from the DIRS-1 retrotransposon. One part of this work focused on the miRNA biogenesis pathway of D. discoideum. It was shown that the dsRNA binding protein RbdB is a necessary component for miRNA processing in the amoeba. There were no mature miRNAs detectable by Northern blot analysis in rbdB- strains, which is also true for drnB mutants. Moreover, primary miRNA-transcripts (pri-miRNAs) accumulated in rbdB- and drnB- strains. Fluorescence microscopy studies showed a nuclear localization of RbdB. RbdB accumulated in distinct perinucleolar foci. These were reminiscent of plant dicing bodies that contain essential protein components for miRNA processing. It is well known that RNase III enzymes and dsRBPs work together during miRNA processing in higher eukaryotes. This work demonstrated that the same is true for members of the amoebozoa supergroup. In Arabidopsis the nuclear zinc finger protein Serrate (SE) is also necessary for miRNA processing. The D. discoideum homologue SrtA, however, is not relevant which has been shown by the analysis of the respective knockdown strain. MiRNAs are known to be differentially expressed in several RNAi knockout strains. The accumulation of miRNAs in agnA- strains and a strong decrease in rbdB- strains were criteria that could thus be successfully used (among others) to identify and validate new miRNAs candidates by Illumina®-RNA sequencing. In another part of this study, the silencing and amplification of the DIRS-1 retrotransposons was analyzed in more detail. It was already known that DIRS-1 transcripts and extrachromosomal DIRS-1 DNA molecules accumulated in agnA- strains. This phenotype was correlated with the loss of endogenous DIRS-1 siRNAs in the knockout strain. By deep sequencing analysis of small RNAs from the AX2 wild type and the agnA- strain, the strong decrease of endogenous DIRS-1 siRNAs in the mutant strain (accounting for 70 %) could be confirmed. Further analysis of the data revealed an unequal distribution of DIRS-1 derived siRNAs along the retroelement in the wild type strain, since only very few of them matched the inverted terminal repeats (ITRs) and the 5’- half of the first open reading frame (ORF). Besides, sense and antisense siRNAs were asymmetrically distributed, as well. By using different reporter constructs it was shown indirectly that AgnA is necessary for the RrpC mediated production of secondary DIRS-1 siRNAs. These analyses also demonstrated an amplification of siRNAs in 5’- and in 3’-direction. Further analysis of the agnA- strain revealed that not only DIRS-1 sense transcripts but also ORF2 and ORF3 encoded proteins were enriched. In contrast, the ORF1 encoded protein GAG was equally expressed in the mutant and the wild type. This might reflect the unequal distribution of endogenous DIRS-1 siRNAs along the retrotransposon. Southern Blot and PCR-analyses showed that extrachromosomal DIRS-1 DNA molecules are present in the cytoplasm of angA- strains and that they are complementary to sense transcripts of intact DIRS-1 elements. Thus, the extrachromosomal DIRS-1 intermediates are likely incomplete cDNA molecules generated by the DIRS-1 encoded reverse transcriptase. One could hypothesize that virus like particles (VLPs) are the places of DIRS-1 cDNA synthesis. At least, DIRS-1 GAG proteins interact and fluorescence microscopy studies showed that they localize in distinct cytoplasmic foci which accumulate in close proximity to the nuclei.