3 resultados para créatine kinase
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In dieser Arbeit sollten neue Interaktionspartner der regulatorischen Untereinheit (R-UE) der Proteinkinase A (PKA) und des Modellorganismus C. elegans identifiziert und funktionell charakterisiert werden. Im Gegensatz zu Säugern (vier Isoformen), exprimiert der Nematode nur eine PKA-R-Isoform. Mittels in silico Analysen und so genannten „Pulldown“ Experimenten, wurde insbesondere nach A Kinase Ankerproteinen (AKAP) in C. elegans gesucht. Aus in silico Recherchen resultiert das rgs5 Protein als mögliches Funktionshomolog des humanen AKAP10. Rgs5 enthält eine potenzielle, amphipathische Helix (AS 421-446, SwissProt ID A9Z1K0), die in Peptide-SPOT-Arrays (durchgeführt im Biotechnologie Zentrum in Oslo, AG Prof. K. Taskén) eine Bindung an RI und RII-UE zeigt. Eine ähnliche Lokalisation von rgs5 und hAKAP10 in der Zelle, sowie vergleichende BRET² Studien, weisen auf eine mögliche Funktionshomologie zwischen AKAP10 und rgs5 hin. Die hier durchgeführten Analysen deuten darauf hin, dass es sich bei rgs5 um ein neues, klassisches AKAP mit „RII bindender Domäne“ Motiv im Modellorganismus C. elegans handelt. Basierend auf so genannten „pulldown“ Versuchen können, neben „klassischen“ AKAPs (Interaktion über amphipathische Helices), auch Interaktionspartner ohne typische Helixmotive gefunden werden. Dazu gehört auch RACK1, ein multifunktionales Protein mit 7 WD40 Domänen, das ubiquitär exprimiert wird und bereits mehr als 70 Interaktionspartner in unterschiedlichsten Signalwegen komplexiert (Adams et al., 2011). Durch BRET² Interaktionsstudien und Oberflächenplasmonresonanz (SPR) Analysen konnten hRI und kin2 als spezifische Interaktionspartner von RACK1 verifiziert werden. Untersuchungen zur Identifikation der Interaktionsflächen der beiden Proteine RACK1 und hRI zeigten im BRET² System, dass RACK1 über die WD40 Domänen 1-2 und 6-7 interagiert. Die Analyse unterschiedlicher hRI-Deletionsmutanten deutet auf die DD-Domäne im N-Terminus und zusätzlich auf eine potenzielle BH3 Domäne im C-Terminus des Proteins als Interaktionsfläche mit RACK1 hin. Die Koexpression von hRI BH3 und RACK1 zeigt einen auffälligen ein Phänotyp in Cos7 Zellen. Dieser zeichnet sich unter anderem durch eine Degradation des Zellkerns, DNA Kondensation und eine starke Vakuolisierung aus, was beides als Anzeichen für einen programmierten Zelltod interpretiert werden könnte. Erste Untersuchungen zum Mechanismus des ausgelösten Zelltods deuten auf eine Caspase unabhängige Apoptose (Paraptose) hin und einen bislang unbekannten Funktionsmechanismus der PKA hin.
Resumo:
Cyclic GMP-dependent protein kinase (PKG) is a key transducer in the NO-cGMP signaling pathway. In this line, PKG has been considered an important drug target for treating hypertensive cardiovascular and pulmonary diseases. However, the investigation of PKG’s allosteric activation mechanism has been hampered by a lack of structural information. One of the fundamental questions on the cGMP-dependent activation of PKG is how the enzyme can distinguish cGMP over cAMP and selectively respond to cGMP. To ensure proper signaling, PKG must have developed unique features to ensure its activation upon the right activation signal. In this thesis, the cGMP-selective activation mechanism of PKG was studied through determining crystal structures of three truncated constructs of the regulatory domain [CNB-A (92-227), CNB-B (271-369), and CNB-A/B (92-351)] of PKG Iβ in the absence or presence of cyclic nucleotides. Herein, two individual CNB domain structures with biochemical data revealed that the C-terminal CNB domain (CNB-B) is responsible for cGMP selectivity, while the N-terminal CNB-domain (CNB-A) has a higher binding affinity for both cGMP and cAMP without showing any selectivity. Based on these crystal structures, mutagenesis studies were performed in which the critical residues for cyclic nucleotide selectivity and activation were identified. Furthermore, we discovered that the conformational changes of the C-terminal helix of the CNB-B that bridges between the regulatory and catalytic domains including the hydrophobic capping interaction are crucial for PKG activation. In addition, to observe the global conformation of the activated R-domain, I solved a co-crystal structure of the CNB-A/B with cGMP. Although a monomeric construct was crystallized, the structure displays a dimer. Strikingly, the CNB-A domain and its bound cGMP provide a key interface for this dimeric interaction. Using small angle X-ray scattering (SAXS), the existence of the cGMP-mediated dimeric interface within the CNB domains was confirmed. Furthermore, measuring cGMP-binding affinities (EC50) of the dimeric interface mutants as well as determining activation constants (Ka) revealed that the interface formation is important for PKG activation. To conclude, this thesis study provides a new mechanistic insight in PKG activation along with a newly found interface that can be targeted for designing PKG-specific activity modulators.