11 resultados para computer-based
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Vorgestellt wird eine weltweit neue Methode, Schnittstellen zwischen Menschen und Maschinen für individuelle Bediener anzupassen. Durch Anwenden von Abstraktionen evolutionärer Mechanismen wie Selektion, Rekombination und Mutation in der EOGUI-Methodik (Evolutionary Optimization of Graphical User Interfaces) kann eine rechnergestützte Umsetzung der Methode für Graphische Bedienoberflächen, insbesondere für industrielle Prozesse, bereitgestellt werden. In die Evolutionäre Optimierung fließen sowohl die objektiven, d.h. messbaren Größen wie Auswahlhäufigkeiten und -zeiten, mit ein, als auch das anhand von Online-Fragebögen erfasste subjektive Empfinden der Bediener. Auf diese Weise wird die Visualisierung von Systemen den Bedürfnissen und Präferenzen einzelner Bedienern angepasst. Im Rahmen dieser Arbeit kann der Bediener aus vier Bedienoberflächen unterschiedlicher Abstraktionsgrade für den Beispielprozess MIPS ( MIschungsProzess-Simulation) die Objekte auswählen, die ihn bei der Prozessführung am besten unterstützen. Über den EOGUI-Algorithmus werden diese Objekte ausgewählt, ggf. verändert und in einer neuen, dem Bediener angepassten graphischen Bedienoberfläche zusammengefasst. Unter Verwendung des MIPS-Prozesses wurden Experimente mit der EOGUI-Methodik durchgeführt, um die Anwendbarkeit, Akzeptanz und Wirksamkeit der Methode für die Führung industrieller Prozesse zu überprüfen. Anhand der Untersuchungen kann zu großen Teilen gezeigt werden, dass die entwickelte Methodik zur Evolutionären Optimierung von Mensch-Maschine-Schnittstellen industrielle Prozessvisualisierungen tatsächlich an den einzelnen Bediener anpaßt und die Prozessführung verbessert.
Resumo:
In den bundesweit rund 670 anerkannten Werkstätten für behinderte Menschen (WfbM) arbeiten aktuell über 290 000 Menschen mit Behinderung. Rund ein Viertel dieser Einrichtungen bieten auch landwirtschaftliche oder gartenbauliche Arbeitsplätze (`Grüne WfbM´). Die UN-Behindertenrechtskonvention fordert u. a. eine inklusive Teilhabe der Menschen mit Behinderung am Arbeitsleben in Form von Zugangsmöglichkeiten zu sozialversicherungspflichtiger Beschäftigung auf dem allgemeinen Arbeitsmarkt. Gleichzeitig können arbeitswirtschaftlich immer mehr landwirtschaftliche Betriebe aufgrund wachsender Betriebsgrößen nicht mehr allein durch die Unternehmerfamilie geführt werden. Neben der Zuhilfenahme von Dienstleistungsanbietern ist die Suche nach Fremdarbeitskräften zwangsläufig. Neben dem Bedarf an qualifiziertem Fachpersonal werden auch Arbeitskräfte für einfachere, tägliche Routinearbeiten gesucht. Die vorliegende Arbeit begleitet wissenschaftlich ein vom Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz gefördertes bundesweites Modellvorhaben zur Vernetzung `Grüner WfbM´ mit landwirtschaftlichen Betrieben. Forschungsleitende Fragestellungen sind die betrieblichen Interessen und Voraussetzungen aus Sicht der landwirtschaftlichen Betriebe für die Beschäftigung von Menschen mit Behinderung sowie für bilaterale Kooperationen mit diesen Einrichtungen. Anhand von 44 Betriebsinterviews und unter Anwendung einer qualitativen, rechnerbasierten Fallstudienanalyse zeigen die Ergebnisse eine Vielzahl von Möglichkeiten wirtschaftlich tragfähiger Beschäftigung behinderter Menschen auch in Kernproduktionsprozessen. Unabdingbar dafür sind angepasste Sozialtugenden und ausreichende Arbeitsmotivation auf Arbeitnehmerseite sowie eine offen-innovative und sozial geprägte Grundeinstellung auf Betriebsleitungsseite. Betriebe wünschen sich dauerhafte und verlässliche Arbeitsverhältnisse. Praktika oder gar Experimente kommen für sie eher nicht in Frage. Weniger als 10% aller `Grünen WfbM´ kooperieren bilateral mit umliegenden Betrieben. Dort wo keine Kontakte bestehen, sind Vorbehalte seitens der Landwirte hinsichtlich Wettbewerbsverzerrungen durch vermeintliche Sozialsubventionierung bzw. im Wettbewerb um Ressourcen (z.B. Land) gegenüber den Einrichtungen anzutreffen. Kooperationen fördern gegenseitiges Verständnis und sind so auch idealer `Türöffner´ für Beschäftigungsverhältnisse.
Resumo:
Der Beitrag beschreibt die Ein- und Durchführung einer Server-basierten Computerinfrastruktur in einer Universitätsbibliothek. Beschrieben wird das so genannte MetaFrame-DV-Konzept der Universitätsbibliothek Kassel, das das dortige Informationsmanagement in den letzten vier Jahren initiiert, konzipiert und umgesetzt hat. Hierbei werden nunmehr nicht mehr nur Applikationsserver z.B. für das CD-Angebot eingesetzt, sondern sämtliche ca. 200 Mitarbeiter- und Funktionsarbeitsplätze über eine Citrix MetaFrame-Installation serverseitig betreut. Besonderes Augenmerk gilt in diesem Beitrag der Konfiguration, der praktischen Administration und den täglichen Arbeitsbedingungen an den Bibliotheksmitarbeiterarbeitsplätzen.
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Topics in education are changing with an ever faster pace. E-Learning resources tend to be more and more decentralised. Users need increasingly to be able to use the resources of the web. For this, they should have tools for finding and organizing information in a decentral way. In this, paper, we show how an ontology-based tool suite allows to make the most of the resources available on the web.
Resumo:
Association rules are a popular knowledge discovery technique for warehouse basket analysis. They indicate which items of the warehouse are frequently bought together. The problem of association rule mining has first been stated in 1993. Five years later, several research groups discovered that this problem has a strong connection to Formal Concept Analysis (FCA). In this survey, we will first introduce some basic ideas of this connection along a specific algorithm, TITANIC, and show how FCA helps in reducing the number of resulting rules without loss of information, before giving a general overview over the history and state of the art of applying FCA for association rule mining.
Resumo:
We report on an elementary course in ordinary differential equations (odes) for students in engineering sciences. The course is also intended to become a self-study package for odes and is is based on several interactive computer lessons using REDUCE and MATHEMATICA . The aim of the course is not to do Computer Algebra (CA) by example or to use it for doing classroom examples. The aim ist to teach and to learn mathematics by using CA-systems.
Resumo:
In this paper, we describe an interdisciplinary project in which visualization techniques were developed for and applied to scholarly work from literary studies. The aim was to bring Christof Schöch's electronic edition of Bérardier de Bataut's Essai sur le récit (1776) to the web. This edition is based on the Text Encoding Initiative's XML-based encoding scheme (TEI P5, subset TEI-Lite). This now de facto standard applies to machine-readable texts used chiefly in the humanities and social sciences. The intention of this edition is to make the edited text freely available on the web, to allow for alternative text views (here original and modern/corrected text), to ensure reader-friendly annotation and navigation, to permit on-line collaboration in encoding and annotation as well as user comments, all in an open source, generically usable, lightweight package. These aims were attained by relying on a GPL-based, public domain CMS (Drupal) and combining it with XSL-Stylesheets and Java Script.
Resumo:
In many real world contexts individuals find themselves in situations where they have to decide between options of behaviour that serve a collective purpose or behaviours which satisfy one’s private interests, ignoring the collective. In some cases the underlying social dilemma (Dawes, 1980) is solved and we observe collective action (Olson, 1965). In others social mobilisation is unsuccessful. The central topic of social dilemma research is the identification and understanding of mechanisms which yield to the observed cooperation and therefore resolve the social dilemma. It is the purpose of this thesis to contribute this research field for the case of public good dilemmas. To do so, existing work that is relevant to this problem domain is reviewed and a set of mandatory requirements is derived which guide theory and method development of the thesis. In particular, the thesis focusses on dynamic processes of social mobilisation which can foster or inhibit collective action. The basic understanding is that success or failure of the required process of social mobilisation is determined by heterogeneous individual preferences of the members of a providing group, the social structure in which the acting individuals are contained, and the embedding of the individuals in economic, political, biophysical, or other external contexts. To account for these aspects and for the involved dynamics the methodical approach of the thesis is computer simulation, in particular agent-based modelling and simulation of social systems. Particularly conductive are agent models which ground the simulation of human behaviour in suitable psychological theories of action. The thesis develops the action theory HAPPenInGS (Heterogeneous Agents Providing Public Goods) and demonstrates its embedding into different agent-based simulations. The thesis substantiates the particular added value of the methodical approach: Starting out from a theory of individual behaviour, in simulations the emergence of collective patterns of behaviour becomes observable. In addition, the underlying collective dynamics may be scrutinised and assessed by scenario analysis. The results of such experiments reveal insights on processes of social mobilisation which go beyond classical empirical approaches and yield policy recommendations on promising intervention measures in particular.
Resumo:
Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste innerhalb einer ubiquitären Umgebung proaktiv an die Bedürfnisse der Nutzer angepasst werden. Aus diesem Grund hat die Kontextvorhersage einen signifikanten Stellenwert innerhalb des ’ubiquitous computing’. Nach unserem besten Wissen, verwenden gängige Ansätze in der Kontextvorhersage ausschließlich die Kontexthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers keine geeigneten Informationen, um eine zuverlässige Kontextvorhersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die ausschließlich die Kontexthistorie des Nutzers verwenden, dessen Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die Lücke der fehlenden Kontextinformationen in der Kontexthistorie des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte und indirekte Relationen, die zwischen den Kontexthistorien der verschiedenen Nutzer existieren können, aus. CCP basiert auf der Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussagen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu können, wird dieser in drei verschiedenen Experimenten evaluiert. Die erzielten Vorhersagegenauigkeiten werden mit denen von drei bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz, dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, verglichen. In allen drei Experimenten werden als Evaluationsbasis kollaborative Datensätze verwendet. Anschließend wird der CCP Ansatz auf einen realen kollaborativen Anwendungsfall, den proaktiven Schutz von Fußgängern, angewendet. Dabei werden durch die Verwendung der kollaborativen Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Gefahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kollaborative Datenbasis werden reale Bewegungskontexte der Fußgänger verwendet. Die Bewegungskontexte werden mittels Smartphones, welche die Fußgänger in ihrer Hosentasche tragen, gesammelt. Aus dem Grund, dass Kontextvorhersageansätze in erster Linie personenbezogene Kontexte wie z.B. Standortdaten oder Verhaltensmuster der Nutzer als Datenbasis zur Vorhersage verwenden, werden rechtliche Evaluationskriterien aus dem Recht des Nutzers auf informationelle Selbstbestimmung abgeleitet. Basierend auf den abgeleiteten Evaluationskriterien, werden der CCP Ansatz und weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen die rechtliche Kompatibilität der untersuchten Vorhersageansätze bezüglich des Rechtes des Nutzers auf informationelle Selbstbestimmung auf. Zum Schluss wird in der Dissertation ein Ansatz für die verteilte und kollaborative Vorhersage von Kontexten vorgestellt. Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den identifizierten rechtlichen Probleme, die bei der Vorhersage von Kontexten und besonders bei der kollaborativen Vorhersage von Kontexten, entgegenzuwirken.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.