7 resultados para comprehension prediction

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In contradiction to the prediction of the Periodic Table but in agreement with earlier suggestions by Brewer and Mann, the ground state configuration of atomic Lawrencium (Z = 103) will not be 7s^2 6d^2 D_3/2 but 7s^2 7p ^2p_1/2. The reason for this deviation from normal trends across the Periodic Table are strong relativistic effects on the outermost 7P_l/2 orbital. Multicontiguration Dirac-Fock calculations are reported for Lawrencium and analogous lighter atoms. These calculations include contributions from magnetic and retardation interactions and an estimation of quantum electrodynamic corrections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A set of parametrized equations has been published by Bratsch and Lagowski for calculating thermodynamic properties of the lanthanides, actinides, element 104, and certainrelated elements. Since these equations were applied to element 104, new values for the first four ionization energies and radii of the ions of charge +1, +2, +3, and +4 have been calculated for this element. The parametrized equations are used here with these new values to calculate some thermodynamic properties of element 104.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the quasimolecular (MO) kinematic dipole model we predict a strong dependence of the anisotropy of the MO radiation on the orientation of the heavy ion scattering plane relative to the direction of the photon detection plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die thermische Verarbeitung von Lebensmitteln beeinflusst deren Qualität und ernährungsphysiologischen Eigenschaften. Im Haushalt ist die Überwachung der Temperatur innerhalb des Lebensmittels sehr schwierig. Zudem ist das Wissen über optimale Temperatur- und Zeitparameter für die verschiedenen Speisen oft unzureichend. Die optimale Steuerung der thermischen Zubereitung ist maßgeblich abhängig von der Art des Lebensmittels und der äußeren und inneren Temperatureinwirkung während des Garvorgangs. Das Ziel der Arbeiten war die Entwicklung eines automatischen Backofens, der in der Lage ist, die Art des Lebensmittels zu erkennen und die Temperatur im Inneren des Lebensmittels während des Backens zu errechnen. Die für die Temperaturberechnung benötigten Daten wurden mit mehreren Sensoren erfasst. Hierzu kam ein Infrarotthermometer, ein Infrarotabstandssensor, eine Kamera, ein Temperatursensor und ein Lambdasonde innerhalb des Ofens zum Einsatz. Ferner wurden eine Wägezelle, ein Strom- sowie Spannungs-Sensor und ein Temperatursensor außerhalb des Ofens genutzt. Die während der Aufheizphase aufgenommen Datensätze ermöglichten das Training mehrerer künstlicher neuronaler Netze, die die verschiedenen Lebensmittel in die entsprechenden Kategorien einordnen konnten, um so das optimale Backprogram auszuwählen. Zur Abschätzung der thermische Diffusivität der Nahrung, die von der Zusammensetzung (Kohlenhydrate, Fett, Protein, Wasser) abhängt, wurden mehrere künstliche neuronale Netze trainiert. Mit Ausnahme des Fettanteils der Lebensmittel konnten alle Komponenten durch verschiedene KNNs mit einem Maximum von 8 versteckten Neuronen ausreichend genau abgeschätzt werden um auf deren Grundlage die Temperatur im inneren des Lebensmittels zu berechnen. Die durchgeführte Arbeit zeigt, dass mit Hilfe verschiedenster Sensoren zur direkten beziehungsweise indirekten Messung der äußeren Eigenschaften der Lebensmittel sowie KNNs für die Kategorisierung und Abschätzung der Lebensmittelzusammensetzung die automatische Erkennung und Berechnung der inneren Temperatur von verschiedensten Lebensmitteln möglich ist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mit Hilfe der Vorhersage von Kontexten können z. B. Dienste innerhalb einer ubiquitären Umgebung proaktiv an die Bedürfnisse der Nutzer angepasst werden. Aus diesem Grund hat die Kontextvorhersage einen signifikanten Stellenwert innerhalb des ’ubiquitous computing’. Nach unserem besten Wissen, verwenden gängige Ansätze in der Kontextvorhersage ausschließlich die Kontexthistorie des Nutzers als Datenbasis, dessen Kontexte vorhersagt werden sollen. Im Falle, dass ein Nutzer unerwartet seine gewohnte Verhaltensweise ändert, enthält die Kontexthistorie des Nutzers keine geeigneten Informationen, um eine zuverlässige Kontextvorhersage zu gewährleisten. Daraus folgt, dass Vorhersageansätze, die ausschließlich die Kontexthistorie des Nutzers verwenden, dessen Kontexte vorhergesagt werden sollen, fehlschlagen könnten. Um die Lücke der fehlenden Kontextinformationen in der Kontexthistorie des Nutzers zu schließen, führen wir den Ansatz zur kollaborativen Kontextvorhersage (CCP) ein. Dabei nutzt CCP bestehende direkte und indirekte Relationen, die zwischen den Kontexthistorien der verschiedenen Nutzer existieren können, aus. CCP basiert auf der Singulärwertzerlegung höherer Ordnung, die bereits erfolgreich in bestehenden Empfehlungssystemen eingesetzt wurde. Um Aussagen über die Vorhersagegenauigkeit des CCP Ansatzes treffen zu können, wird dieser in drei verschiedenen Experimenten evaluiert. Die erzielten Vorhersagegenauigkeiten werden mit denen von drei bekannten Kontextvorhersageansätzen, dem ’Alignment’ Ansatz, dem ’StatePredictor’ und dem ’ActiveLeZi’ Vorhersageansatz, verglichen. In allen drei Experimenten werden als Evaluationsbasis kollaborative Datensätze verwendet. Anschließend wird der CCP Ansatz auf einen realen kollaborativen Anwendungsfall, den proaktiven Schutz von Fußgängern, angewendet. Dabei werden durch die Verwendung der kollaborativen Kontextvorhersage Fußgänger frühzeitig erkannt, die potentiell Gefahr laufen, mit einem sich nähernden Auto zu kollidieren. Als kollaborative Datenbasis werden reale Bewegungskontexte der Fußgänger verwendet. Die Bewegungskontexte werden mittels Smartphones, welche die Fußgänger in ihrer Hosentasche tragen, gesammelt. Aus dem Grund, dass Kontextvorhersageansätze in erster Linie personenbezogene Kontexte wie z.B. Standortdaten oder Verhaltensmuster der Nutzer als Datenbasis zur Vorhersage verwenden, werden rechtliche Evaluationskriterien aus dem Recht des Nutzers auf informationelle Selbstbestimmung abgeleitet. Basierend auf den abgeleiteten Evaluationskriterien, werden der CCP Ansatz und weitere bekannte kontextvorhersagende Ansätze bezüglich ihrer Rechtsverträglichkeit untersucht. Die Evaluationsergebnisse zeigen die rechtliche Kompatibilität der untersuchten Vorhersageansätze bezüglich des Rechtes des Nutzers auf informationelle Selbstbestimmung auf. Zum Schluss wird in der Dissertation ein Ansatz für die verteilte und kollaborative Vorhersage von Kontexten vorgestellt. Mit Hilfe des Ansatzes wird eine Möglichkeit aufgezeigt, um den identifizierten rechtlichen Probleme, die bei der Vorhersage von Kontexten und besonders bei der kollaborativen Vorhersage von Kontexten, entgegenzuwirken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der psycholinguistischen Forschung ist die Annahme weitverbreitet, dass die Bewertung von Informationen hinsichtlich ihres Wahrheitsgehaltes oder ihrer Plausibilität (epistemische Validierung; Richter, Schroeder & Wöhrmann, 2009) ein strategischer, optionaler und dem Verstehen nachgeschalteter Prozess ist (z.B. Gilbert, 1991; Gilbert, Krull & Malone, 1990; Gilbert, Tafarodi & Malone, 1993; Herbert & Kübler, 2011). Eine zunehmende Anzahl an Studien stellt dieses Zwei-Stufen-Modell von Verstehen und Validieren jedoch direkt oder indirekt in Frage. Insbesondere Befunde zu Stroop-artigen Stimulus-Antwort-Kompatibilitätseffekten, die auftreten, wenn positive und negative Antworten orthogonal zum aufgaben-irrelevanten Wahrheitsgehalt von Sätzen abgegeben werden müssen (z.B. eine positive Antwort nach dem Lesen eines falschen Satzes oder eine negative Antwort nach dem Lesen eines wahren Satzes; epistemischer Stroop-Effekt, Richter et al., 2009), sprechen dafür, dass Leser/innen schon beim Verstehen eine nicht-strategische Überprüfung der Validität von Informationen vornehmen. Ausgehend von diesen Befunden war das Ziel dieser Dissertation eine weiterführende Überprüfung der Annahme, dass Verstehen einen nicht-strategischen, routinisierten, wissensbasierten Validierungsprozesses (epistemisches Monitoring; Richter et al., 2009) beinhaltet. Zu diesem Zweck wurden drei empirische Studien mit unterschiedlichen Schwerpunkten durchgeführt. Studie 1 diente der Untersuchung der Fragestellung, ob sich Belege für epistemisches Monitoring auch bei Informationen finden lassen, die nicht eindeutig wahr oder falsch, sondern lediglich mehr oder weniger plausibel sind. Mithilfe des epistemischen Stroop-Paradigmas von Richter et al. (2009) konnte ein Kompatibilitätseffekt von aufgaben-irrelevanter Plausibilität auf die Latenzen positiver und negativer Antworten in zwei unterschiedlichen experimentellen Aufgaben nachgewiesen werden, welcher dafür spricht, dass epistemisches Monitoring auch graduelle Unterschiede in der Übereinstimmung von Informationen mit dem Weltwissen berücksichtigt. Darüber hinaus belegen die Ergebnisse, dass der epistemische Stroop-Effekt tatsächlich auf Plausibilität und nicht etwa auf der unterschiedlichen Vorhersagbarkeit von plausiblen und unplausiblen Informationen beruht. Das Ziel von Studie 2 war die Prüfung der Hypothese, dass epistemisches Monitoring keinen evaluativen Mindset erfordert. Im Gegensatz zu den Befunden anderer Autoren (Wiswede, Koranyi, Müller, Langner, & Rothermund, 2013) zeigte sich in dieser Studie ein Kompatibilitätseffekt des aufgaben-irrelevanten Wahrheitsgehaltes auf die Antwortlatenzen in einer vollständig nicht-evaluativen Aufgabe. Die Ergebnisse legen nahe, dass epistemisches Monitoring nicht von einem evaluativen Mindset, möglicherweise aber von der Tiefe der Verarbeitung abhängig ist. Studie 3 beleuchtete das Verhältnis von Verstehen und Validieren anhand einer Untersuchung der Online-Effekte von Plausibilität und Vorhersagbarkeit auf Augenbewegungen beim Lesen kurzer Texte. Zusätzlich wurde die potentielle Modulierung dieser Effeke durch epistemische Marker, die die Sicherheit von Informationen anzeigen (z.B. sicherlich oder vielleicht), untersucht. Entsprechend der Annahme eines schnellen und nicht-strategischen epistemischen Monitoring-Prozesses zeigten sich interaktive Effekte von Plausibilität und dem Vorhandensein epistemischer Marker auf Indikatoren früher Verstehensprozesse. Dies spricht dafür, dass die kommunizierte Sicherheit von Informationen durch den Monitoring-Prozess berücksichtigt wird. Insgesamt sprechen die Befunde gegen eine Konzeptualisierung von Verstehen und Validieren als nicht-überlappenden Stufen der Informationsverarbeitung. Vielmehr scheint eine Bewertung des Wahrheitsgehalts oder der Plausibilität basierend auf dem Weltwissen – zumindest in gewissem Ausmaß – eine obligatorische und nicht-strategische Komponente des Sprachverstehens zu sein. Die Bedeutung der Befunde für aktuelle Modelle des Sprachverstehens und Empfehlungen für die weiterführende Forschung zum Vehältnis von Verstehen und Validieren werden aufgezeigt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.