2 resultados para coalescent theory, effective dispersal, gene flow, habitat loss, microsatellite DNA, Orthonyx temminckii

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mit der Verwirklichung ,Ökologischer Netzwerke‘ werden Hoffnungen zum Stopp des Verlustes der biologischen Vielfalt verknüpft. Sowohl auf gesamteuropäischer Ebene (Pan-European Ecological Network - PEEN) als auch in den einzelnen Staaten entstehen Pläne zum Aufbau von Verbundsystemen. Im föderalen Deutschland werden kleinmaßstäbliche Biotopverbundplanungen auf Landesebene aufgestellt; zum nationalen Biotopverbund bestehen erste Konzepte. Die vorliegende Arbeit ist auf diese überörtlichen, strategisch vorbereitenden Planungsebenen ausgerichtet. Ziele des Verbunds sind der Erhalt von Populationen insbesondere der gefährdeten Arten sowie die Ermöglichung von Ausbreitung und Wanderung. Aufgrund fehlender Datengrundlagen zu den Arten und Populationen ist es nicht ohne weiteres möglich, die Konzepte und Modelle der Populationsökologie in die überörtlichen Planungsebenen zu übertragen. Gemäß der o.g. Zielstellungen sollte sich aber die Planung von Verbundsystemen an den Ansprüchen der auf Verbund angewiesenen Arten orientieren. Ziel der Arbeit war die Entwicklung einer praktikablen GIS-gestützten Planungshilfe zur größtmöglichen Integration ökologischen Wissens unter der Bedingung eingeschränkter Informationsverfügbarkeit. Als Grundlagen dazu werden in Übersichtsform zunächst die globalen, europäisch-internationalen und nationalen Rahmenbedingungen und Anforderungen bezüglich des Aufbaus von Verbundsystemen zusammengestellt. Hier sind die Strategien zum PEEN hervorzuheben, die eine Integration ökologischer Inhalte insbesondere durch die Berücksichtigung räumlich-funktionaler Beziehungen fordern. Eine umfassende Analyse der landesweiten Biotopverbundplanungen der BRD zeigte die teilweise erheblichen Unterschiede zwischen den Länderplanungen auf, die es aktuell nicht ermöglichen, ein schlüssiges nationales Konzept zusammenzufügen. Nicht alle Länder haben landesweite Biotopverbundplanungen und Landeskonzepte, bei denen dem geplanten Verbund die Ansprüche von Arten zugrunde gelegt werden, gibt es nur ansatzweise. Weiterhin wurde eine zielgerichtete Eignungsprüfung bestehender GIS-basierter Modelle und Konzepte zum Verbund unter Berücksichtigung der regelmäßig in Deutschland verfügbaren Datengrundlagen durchgeführt. Da keine integrativen regelorientierten Ansätze vorhanden waren, wurde der vektorbasierte Algorithmus HABITAT-NET entwickelt. Er arbeitet mit ,Anspruchstypen‘ hinsichtlich des Habitatverbunds, die stellvertretend für unterschiedliche ökologische Gruppen von (Ziel-) Arten mit terrestrischer Ausbreitung stehen. Kombiniert wird die Fähigkeit zur Ausbreitung mit einer Grobtypisierung der Biotopbindung. Die wichtigsten Grundlagendaten bilden die jeweiligen (potenziellen) Habitate von Arten eines Anspruchstyps sowie die umgebende Landnutzung. Bei der Bildung von ,Lebensraumnetzwerken‘ (Teil I) werden gestufte ,Funktions- und Verbindungsräume‘ generiert, die zu einem räumlichen System verknüpft sind. Anschließend kann die aktuelle Zerschneidung der Netzwerke durch Verkehrstrassen aufgezeigt werden, um darauf aufbauend prioritäre Abschnitte zur Wiedervernetzung zu ermitteln (Teil II). Begleitend wird das Konzept der unzerschnittenen Funktionsräume (UFR) entworfen, mit dem die Indikation von Habitatzerschneidung auf Landschaftsebene möglich ist. Diskutiert werden schließlich die Eignung der Ergebnisse als kleinmaßstäblicher Zielrahmen, Tests zur Validierung, Vergleiche mit Verbundplanungen und verschiedene Setzungen im GIS-Algorithmus. Erläuterungen zu den Einsatzmöglichkeiten erfolgen beispielsweise für die Bereiche Biotopverbund- und Landschaftsplanung, Raumordnung, Strategische Umweltprüfung, Verkehrswegeplanung, Unterstützung des Konzeptes der Lebensraumkorridore, Kohärenz im Schutzgebietssystem NATURA 2000 und Aufbau von Umweltinformationssystemen. Schließlich wird ein Rück- und Ausblick mit der Formulierung des weiteren Forschungsbedarfs verknüpft.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigates the systematics and evolution of the Neotropical genus Deuterocohnia Mez (Bromeliaceae). It provides a comprehensive taxonomic revision as well as phylogenetic analyses based on chloroplast and nuclear DNA sequences and presents a hypothesis on the evolution of the genus. A broad morphological, anatomical, biogeographical and ecological overview of the genus is given in the first part of the study. For morphological character assessment more than 700 herbarium specimens from 39 herbaria as well as living plant material in the field and in the living collections of botanical gardens were carefully examined. The arid habitats, in which the species of Deuterocohnia grow, are reflected by the morphological and anatomical characters of the species. Important characters for species delimitation were identified, like the length of the inflorescence, the branching order, the density of flowers on partial inflorescences, the relation of the length of the primary bracts to that of the partial inflorescence, the sizes of floral bracts, sepals and petals, flower colour, the presence or absence of a pedicel, the curvature of the stamina and the petals during anthesis. After scrutinizing the nomenclatural history of the taxa belonging to Deuterocohnia – including the 1992 syonymized genus Abromeitiella – 17 species, 4 subspecies and 4 varieties are accepted in the present revision. Taxonomic changes were made in the following cases: (I) New combinations: A. abstrusa (A. Cast.) N. Schütz is re-established – as defined by Castellanos (1931) – and transfered to D. abstrusa; D. brevifolia (Griseb.) M.A. Spencer & L.B. Sm. includes accessions of the former D. lorentziana (Mez) M.A. Spencer & L.B. Sm., which are not assigned to D. abstrusa; D. bracteosa W. Till is synonymized to D. strobilifera Mez; D. meziana Kuntze ex Mez var. carmineo-viridiflora Rauh is classified as a subspecies of D. meziana (ssp. carmineo-viridiflora (Rauh) N. Schütz); D. pedicellata W. Till is classified as a subspecies of D. meziana (ssp. pedicellata (W. Till) N. Schütz); D. scapigera (Rauh & L. Hrom.) M.A. Spencer & L.B. Sm ssp. sanctae-crucis R. Vásquez & Ibisch is classified as a species (D. sanctae-crucis (R. Vásquez & Ibisch) N. Schütz); (II) New taxa: a new subspecies of D. meziana Kuntze ex Mez is established; a new variety of D. scapigera is established; (the new taxa will be validly published elsewhere); (III) New type: an epitype for D. longipetala was chosen. All other species were kept according to Spencer and Smith (1992) or – in the case of more recently described species – according to the protologue. Beside the nomenclatural notes and the detailed descriptions, information on distribution, habitat and ecology, etymology and taxonomic delimitation is provided for the genus and for each of its species. An key was constructed for the identification of currently accepted species, subspecies and varieties. The key is based on easily detectable morphological characters. The former synonymization of the genus Abromeitiella into Deuterocohnia (Spencer and Smith 1992) is re-evalutated in the present study. Morphological as well as molecular investigations revealed Deuterocohnia incl. Abromeitiella as being monophyletic, with some indications that a monophyletic Abromeitiella lineage arose from within Deuterocohnia. Thus the union of both genera is confirmed. The second part of the present thesis describes and discusses the molecular phylogenies and networks. Molecular analyses of three chloroplast intergenic spacers (rpl32-trnL, rps16-trnK, trnS-ycf3) were conducted with a sample set of 119 taxa. This set included 103 Deuterocohnia accessions from all 17 described species of the genus and 16 outgroup taxa from the remainder of Pitcairnioideae s.str. (Dyckia (8 sp.), Encholirium (2 sp.), Fosterella (4 sp.) and Pitcairnia (2 sp.)). With its high sampling density, the present investigation by far represents the most comprehensive molecular study of Deuterocohnia up till now. All data sets were analyzed separately as well as in combination, and various optimality criteria for phylogenetic tree construction were applied (Maximum Parsimony, Maximum Likelihood, Bayesian inferences and the distance method Neighbour Joining). Congruent topologies were generally obtained with different algorithms and optimality criteria, but individual clades received different degrees of statistical support in some analyses. The rps16-trnK locus was the most informative among the three spacer regions examined. The results of the chloroplast DNA analyses revealed a highly supported paraphyly of Deuterocohnia. Thus, the cpDNA trees divide the genus into two subclades (A and B), of which Deuterocohnia subclade B is sister to the included Dyckia and Encholirium accessions, and both together are sister to Deuterocohnia subclade A. To further examine the relationship between Deuterocohnia and Dyckia/Encholirium at the generic level, two nuclear low copy markers (PRK exon2-5 and PHYC exon1) were analysed with a reduced taxon set. This set included 22 Deuterocohnia accessions (including members of both cpDNA subclades), 2 Dyckia, 2 Encholirium and 2 Fosterella species. Phylogenetic trees were constructed as described above, and for comparison the same reduced taxon set was also analysed at the three cpDNA data loci. In contrast to the cpDNA results, the nuclear DNA data strongly supported the monophyly of Deuterocohnia, which takes a sister position to a clade of Dyckia and Encholirium samples. As morphology as well as nuclear DNA data generated in the present study and in a former AFLP analysis (Horres 2003) all corroborate the monophyly of Deuterocohnia, the apparent paraphyly displayed in cpDNA analyses is interpreted to be the consequence of a chloroplast capture event. This involves the introgression of the chloroplast genome from the common ancestor of the Dyckia/ Encholirium lineage into the ancestor of Deuterocohnia subclade B species. The chloroplast haplotypes are not species-specific in Deuterocohnia. Thus, one haplotype was sometimes shared by several species, where the same species may harbour different haplotypes. The arrangement of haplotypes followed geographical patterns rather than taxonomic boundaries, which may indicate some residual gene flow among populations from different Deuteroccohnia species. Phenotypic species coherence on the background of ongoing gene flow may then be maintained by sets of co-adapted alleles, as was suggested by the porous genome concept (Wu 2001, Palma-Silva et al. 2011). The results of the present study suggest the following scenario for the evolution of Deuterocohnia and its species. Deuterocohnia longipetala may be envisaged as a representative of the ancestral state within the genus. This is supported by (1) the wide distribution of this species; (2) the overlap in distribution area with species of Dyckia; (3) the laxly flowered inflorescences, which are also typical for Dyckia; (4) the yellow petals with a greenish tip, present in most other Deuterocohnia species. The following six extant lineages within Deuterocohnia might have independently been derived from this ancestral state with a few changes each: (I) D. meziana, D. brevispicata and D. seramisiana (Bolivia, lowland to montane areas, mostly reddish-greenish coloured, very laxly to very densely flowered); (II) D. strobilifera (Bolivia, high Andean mountains, yellow flowers, densely flowered); (III) D. glandulosa (Bolivia, montane areas, yellow-greenish flowers, densely flowered); (IV) D. haumanii, D. schreiteri, D. digitata, and D. chrysantha (Argentina, Chile, E Andean mountains and Atacama desert, yellow-greenish flowers, densely flowered); (V) D. recurvipetala (Argentina, foothills of the Andes, recurved yellow flowers, laxly flowered); (VI) D. gableana, D. scapigera, D. sanctae-crucis, D. abstrusa, D. brevifolia, D. lotteae (former Abromeitiella species, Bolivia, Argentina, higher Andean mountains, greenish-yellow flowers, inflorescence usually simple). Originating from the lower montane Andean regions, at least four lineages of the genus (I, II, IV, VI) adapted in part to higher altitudes by developing densely flowered partial inflorescences, shorter flowers and – in at least three lineages (II, IV, VI) – smaller rosettes, whereas species spreading into the lowlands (I, V) developed larger plants, laxly flowered, amply branched inflorescences and in part larger flowers (I).