4 resultados para characterization and renewable source

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In zebrafish, germ cells are responsible for transmitting the genetic information from one generation to the next. During the first cleavages of zebrafish embryonic development, a specialized part of the cytoplasm known as germ plasm, is responsible of committing four blastomeres to become the progenitors of all germ cells in the forming embryo. Much is known about how the germ plasm is spatially distributed in early stages of primordial germ cell development, a process described to be dependant on microtubules and actin. However, little is known about how the material is inherited after it reorganizes into a perinuclear location, or how is the symmetrical distribution regulated in order to ensure proper inheritance of the material by both daughter cells. It is also not clear whether there is a controlled mechanism that regulates the number of granules inherited by the daughter cells, or whether it is a random process. We describe the distribution of germ plasm material from 4hpf to 24hpf in zebrafish primordial germ cells using Vasa protein as marker. Vasa positive material appears to be conglomerate into 3 to 4 big spherical structures at 4hpf. While development progresses, these big structures become smaller perinuclear granules that reach a total number of approximately 30 at 24hpf. We investigated how this transformation occurs and how the minus-end microtubule dependent motor protein Dynein plays a role in this process. Additionally, we describe specific colocalization of microtubules and perinuclear granules during interphase and more interestingly, during all different stages of cell division. We show that distribution of granules follow what seems to be a regulated distribution: during cells division, daughter cells inherit an equal number of granules. We propose that due to the permanent colocalization of microtubular structures with germinal granules during interphase and cell division, a coordinated mechanism between these structures may ensure proper distribution of the material among daughter cells. Furthermore, we show that exposure to the microtubule-depolymerizing drug nocodazole leads to disassembly of the germ cell nuclear lamin matrix, chromatin condensation, and fusion of granules to a big conglomerate, revealing dependence of granular distribution on microtubules and proper nuclear structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the last twenty years, the consumption of poultry meat has boomed in Vietnam as in the rest of the developing world. Capital-intensive production has grown rapidly to satisfy this demand. Based on a few numbers of genetically uniform strains, these systems threaten biodiversity. In Vietnam, both rural and urban households still keep indigenous chickens as part of a diversified livelihood portfolio. In line with the national in situ conservation strategy, this study approached the context of local poultry keeping in two rural and one suburban districts of Northern Vietnam. It aimed at understanding households’ willingness, constraints and opportunities for practice improvement, including breeds’ management. As the Ri chicken constitutes the large majority of backyard flocks, two particular objectives of this study are the morpho-biometric characterisation of phenotypic diversity among individuals classified as Ri by farmers and an assessment of their productive potential. Chicken was found to hold a different place in livelihoods of the three districts with consequences on the management of genetic resources. The most favourable conditions for improvement of the Ri breed was found in the rural district of Luong-Son, due to market integration. In the more remote district of Ky-Son, living standards were lower and much would be gained from Ri conservation. Ri breed was the most threatened in the suburban Gia-Lam district, where poultry was a minor side-activity, lacking incentive for genetic management. From motives and constraints, tracks about breeding goals are suggested. Further considerations about conservation, improvement, market integration and livelihoods are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.