4 resultados para changes in the environment
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Five laboratory incubation experiments were carried out to assess the salinity-induced changes in the microbial use of sugarcane filter cake added to soil. The first laboratory experiment was carried out to prove the hypothesis that the lower content of fungal biomass in a saline soil reduces the decomposition of a complex organic substrate in comparison to a non-saline soil under acidic conditions. Three different rates (0.5, 1.0, and 2.0%) of sugarcane filter cake were added to both soils and incubated for 63 days at 30°C. In the saline control soil without amendment, cumulative CO2 production was 70% greater than in the corresponding non-saline control soil, but the formation of inorganic N did not differ between these two soils. However, nitrification was inhibited in the saline soil. The increase in cumulative CO2 production by adding filter cake was similar in both soils, corresponding to 29% of the filter cake C at all three addition rates. Also the increases in microbial biomass C and biomass N were linearly related to the amount of filter cake added, but this increase was slightly higher for both properties in the saline soil. In contrast to microbial biomass, the absolute increase in ergosterol content in the saline soil was on average only half that in the non-saline soil and it showed also strong temporal changes during the incubation: A strong initial increase after adding the filter cake was followed by a rapid decline. The addition of filter cake led to immobilisation of inorganic N in both soils. This immobilisation was not expected, because the total C-to-total N ratio of the filter cake was below 13 and the organic C-to-organic N ratio in the 0.5 M K2SO4 extract of this material was even lower at 9.2. The immobilisation was considerably higher in the saline soil than in the non-saline soil. The N immobilisation capacity of sugarcane filter cake should be considered when this material is applied to arable sites at high rations. The second incubation experiment was carried out to examine the N immobilizing effect of sugarcane filter cake (C/N ratio of 12.4) and to investigate whether mixing it with compost (C/N ratio of 10.5) has any synergistic effects on C and N mineralization after incorporation into the soil. Approximately 19% of the compost C added and 37% of the filter cake C were evolved as CO2, assuming that the amendments had no effects on the decomposition of soil organic C. However, only 28% of the added filter cake was lost according to the total C and d13C values. Filter cake and compost contained initially significant concentrations of inorganic N, which was nearly completely immobilized between day 7 and 14 of the incubation in most cases. After day 14, N re-mineralization occurred at an average rate of 0.73 µg N g-1 soil d-1 in most amendment treatments, paralleling the N mineralization rate of the non-amended control without significant difference. No significant net N mineralization from the amendment N occurred in any of the amendment treatments in comparison to the control. The addition of compost and filter cake resulted in a linear increase in microbial biomass C with increasing amounts of C added. This increase was not affected by differences in substrate quality, especially the three times larger content of K2SO4 extractable organic C in the sugarcane filter cake. In most amendment treatments, microbial biomass C and biomass N increased until the end of the incubation. No synergistic effects could be observed in the mixture treatments of compost and sugarcane filter cake. The third 42-day incubation experiment was conducted to answer the questions whether the decomposition of sugarcane filter cake also result in immobilization of nitrogen in a saline alkaline soil and whether the mixing of sugarcane filter cake with glucose (adjusted to a C/N ratio of 12.5 with (NH4)2SO4) change its decomposition. The relative percentage CO2 evolved increased from 35% of the added C in the pure 0.5% filter cake treatment to 41% in the 0.5% filter cake +0.25% glucose treatment to 48% in the 0.5% filter cake +0.5% glucose treatment. The three different amendment treatments led to immediate increases in microbial biomass C and biomass N within 6 h that persisted only in the pure filter cake treatment until the end of the incubation. The fungal cell-membrane component ergosterol showed initially an over-proportionate increase in relation to microbial biomass C that fully disappeared at the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added in comparison to the control treatment. Since day 14, the immobilized N was re-mineralized at rates between 1.31 and 1.51 µg N g-1 soil d-1 in the amendment treatments and was thus more than doubled in comparison with the control treatment. This means that the re-mineralization rate is independent from the actual size of the microbial residues pool and also independent from the size of the soil microbial biomass. Other unknown soil properties seem to form a soil-specific gate for the release of inorganic N. The fourth incubation experiment was carried out with the objective of assessing the effects of salt additions containing different anions (Cl-, SO42-, HCO3-) on the microbial use of sugarcane filter cake and dhancha leaves amended to inoculated sterile quartz sand. In the subsequent fifth experiment, the objective was to assess the effects of inoculum and temperature on the decomposition of sugar cane filter cake. In the fourth experiment, sugarcane filter cake led to significantly lower respiration rates, lower contents of extractable C and N, and lower contents of microbial biomass C and N than dhancha leaves, but to a higher respiratory quotient RQ and to a higher content of the fungal biomarker ergosterol. The RQ was significantly increased after salt addition, when comparing the average of all salinity treatments with the control. Differences in anion composition had no clear effects on the RQ values. In experiment 2, the rise in temperature from 20 to 40°C increased the CO2 production rate by a factor of 1.6, the O2 consumption rate by a factor of 1.9 and the ergosterol content by 60%. In contrast, the contents of microbial biomass N decreased by 60% and the RQ by 13%. The effects of the inoculation with a saline soil were in most cases negative and did not indicate a better adaptation of these organisms to salinity. The general effects of anion composition on microbial biomass and activity indices were small and inconsistent. Only the fraction of 0.5 M K2SO4 extractable C and N in non-fumigated soil was consistently increased in the 1.2 M NaHCO3 treatment of both experiments. In contrast to the small salinity effects, the quality of the substrate has overwhelming effects on microbial biomass and activity indices, especially on the fungal part of the microbial community.
Resumo:
In the last decades, there has been a growing tendency towards international trade and globalisation, particularly leading to a significant increase in flows of agricultural commodities worldwide. From a macroeconomic perspective, the commodity projections are more optimistic than the previous years and the long run tendency shows an increasing demand for feedstock. However, the strong shifts of shocks and fluctuations (in terms of prices and volumes) are a concern to global food security, with the number of hungry people rising to nearly one billion. Agriculture is a main user of natural resources, and it has a strong link with rural societies and the environment. Forecasted impacts from climate change, limited productive endorsements and emerging rivals on crop production, such bio-energy, aggravate the panorama on food scarcity. In this context, it is a great challenge on farming and food systems to reduce global hunger and produce in sustainable ways adequate supplies for food, feed, and non-food uses. The main objective of this work is to question the sustainability of food and agriculture systems. It is particularly interesting to know its role and if it will be able to respond to a growing population with increasing food demand in a world where pressure on land, water and other natural resources are already evident, and, moreover, climate change will also condition and impact the outcome. Furthermore, a deeper focus will be set on developing countries, which are expected to emerge and take a leading role in the international arena. This short paper is structured as follows: Section I, “Introduction”, describes the social situation regarding hunger, Section II, “Global Context”, attempts to summarise the current scenario in the international trading scheme and present the emerging rivals for primary resources, and in Section III, “Climate Change”, presents an overview of possible changes in the sector and future perspectives in the field. Finally, in Section IV, “Conclusion”, the main conclusions are presented.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.