9 resultados para bladder irrigation

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water shortage is one of the major constraints for production of horticultural crops in arid and semiarid regions. A field experiment was conducted to determine irrigation water and fertilizer use efficiency, growth and yield of tomato under clay pot irrigation at the experimental site of Sekota Dryland Agricultural Research Center, Lalibela, Ethiopia in 2009/10. The experiment comprised of five treatments including furrow irrigated control and clay pot irrigation with different plant population and fertilization methods, which were arranged in Randomized Complete Block Design with three replications. The highest total and marketable fruit yields were obtained from clay pot irrigation combined with application of nitrogen fertilizer with irrigation water irrespective of difference in plant population. The clay pot irrigation had seasonal water use of up to 143.71 mm, which resulted in significantly higher water use efficiency (33.62 kg m^-3) as compared to the furrow irrigation, which had a seasonal water use of 485.50 mm, and a water use efficiency of 6.67 kg m^-3. Application of nitrogen fertilizer with irrigation water in clay pots improved fertilizer use efficiency of tomato by up to 52% than band application with furrow or clay pot irrigation. Thus, clay pot irrigation with 33,333 plants ha^-1 and nitrogen fertilizer application with irrigation water in clay pots was the best method for increasing the yield of tomato while economizing the use of water and nitrogen fertilizer in a semiarid environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field experiments were conducted to compare the alternate partial root-zone irrigation (APRI) with and without black plastic mulch (BPM) with full root-zone irrigation (FRI) in furrow-irrigated okra (Abelmoschus esculentus L. Moench) at Bhubaneswar, India. APRI means that one of the two neighbouring furrows was alternately irrigated during consecutive watering. FRI was the conventional method where every furrow was irrigated during each watering. The used irrigation levels were 25% available soil moisture depletion (ASMD), 50% ASMD, and 75% ASMD. The plant growth and yield parameters were observed to be significantly (p < 0.05) higher with frequent irrigation (at 25% ASMD) under all irrigation strategies. However, APRI + BPM produced the maximum plant growth and yield using 22% and 56% less water over APRI without BPM and FRI, respectively. The highest pod yield (10025 kg ha^-1) was produced under APRI at 25% ASMD + BPM, which was statistically at par with the pod yield under APRI at 50% ASMD + BPM. Irrigation water use efficiency (IWUE), which indicates the pod yield per unit quantity of irrigation water, was estimated to be highest (12.3 kg m^-3) under APRI at 50% ASMD + BPM, followed by APRI at 25% ASMD + BPM. Moreover, the treatment APRI at 50% ASMD + BPM was found economically superior to other treatments, generating more net return (US $ 952 ha^-1) with higher benefit–cost ratio (1.70).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evapotranspiration (ET) is a complex process in the hydrological cycle that influences the quantity of runoff and thus the irrigation water requirements. Numerous methods have been developed to estimate potential evapotranspiration (PET). Unfortunately, most of the reliable PET methods are parameter rich models and therefore, not feasible for application in data scarce regions. On the other hand, accuracy and reliability of simple PET models vary widely according to regional climate conditions. The objective of the present study was to evaluate the performance of three temperature-based and three radiation-based simple ET methods in estimating historical ET and projecting future ET at Muda Irrigation Scheme at Kedah, Malaysia. The performance was measured by comparing those methods with the parameter intensive Penman-Monteith Method. It was found that radiation based methods gave better performance compared to temperature-based methods in estimation of ET in the study area. Future ET simulated from projected climate data obtained through statistical downscaling technique also showed that radiation-based methods can project closer ET values to that projected by Penman-Monteith Method. It is expected that the study will guide in selecting suitable methods for estimating and projecting ET in accordance to availability of meteorological data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moringa oleifera is becoming increasingly popular as an industrial crop due to its multitude of useful attributes as water purifier, nutritional supplement and biofuel feedstock. Given its tolerance to sub-optimal growing conditions, most of the current and anticipated cultivation areas are in medium to low rainfall areas. This study aimed to assess the effect of various irrigation levels on floral initiation, flowering and fruit set. Three treatments namely, a 900 mm (900IT), 600 mm (600IT) and 300 mm (300IT) per annum irrigation treatment were administered through drip irrigation, simulating three total annual rainfall amounts. Individual inflorescences from each treatment were tagged during floral initiation and monitored throughout until fruit set. Flower bud initiation was highest at the 300IT and lowest at the 900IT for two consecutive growing seasons. Fruit set on the other hand, decreased with the decrease in irrigation treatment. Floral abortion, reduced pollen viability as well as moisture stress in the style were contributing factors to the reduction in fruiting/yield observed at the 300IT. Moderate water stress prior to floral initiation could stimulate flower initiation, however, this should be followed by sufficient irrigation to ensure good pollination, fruit set and yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over 1,000 years, the Balinese have developed a unique system of democratic and sustainable water irrigation. It has shaped the cultural landscapes of Bali and enables local communities to manage the ecology of terraced rice fields at the scale of whole watersheds. The Subak system has made the Balinese the most productive rice growers in Indonesia and ensures a high level of food sovereignty for a dense population on the volcanic island. The Subak system provides a vibrant example of a diverse, ecologically sustainable, economically productive and democratic water management system that is also characterized by its nonreliance on fossil fuel derivatives or heavy machinery. In 2012, UNESCO has recognized five rice terraces and their water temples as World Heritage site and supports its conservation and protection. However, the fragile Subak system is threatened for its complexity and interconnectedness by new agricultural practices and increasing tourism on the island.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the variation in physiological response to deficit irrigation together with better knowledge on physiological characteristics of different genotypes that contribute to drought adaptation mechanisms would be helpful in transferring different irrigation technologies to farmers. A field experiment was carried to investigate the physiological response of four tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) to moderate water deficit induced by alternate furrow irrigation (AFI) and deficit irrigation (DI) under semi-arid condition of Ethiopia during 2013 and 2014. The study also aimed at identifying physiological attributes to the fruit yield of tomato under different deficit irrigation techniques. A factorial combination of irrigation treatments and cultivar were arranged in a complete randomized design with three replicates. Results showed that stomatal conductance (g_s) was significantly reduced while photosynthetic performance measured as chlorophyll fluorescence (Fv’/Fm’), relative water content (RWC) and leaf ash content remained unaffected under deficit irrigations. Significant differences among cultivars were found for water use efficiency (WUE), g_s, chlorophyll content (Chl_SPAD), normal difference vegetation index (NDVI), leaf ash content and fruit growth rate. However, cultivar differences in WUE were more accounted for by the regulation of g_s, therefore, g_s could be useful for breeders for screening large numbers of genotypes with higher WUE under deficit irrigation condition. The study result also demonstrated that cultivar with traits that contribute to achieve higher yields under deficit irrigation strategies has the potential to increase WUE.