1 resultado para biological nutrient removal
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Intensification processes in homegardens of the Nuba Mountains, Sudan, raise concerns about strongly positive carbon (C) and nutrient balances which are expected to lead to substantial element losses from these agroecosystems, in particular via soil gaseous emissions. Therefore, this thesis aimed at the quantification of C, nitrogen (N), phosphorus (P) and potassium (K) input and output fluxes with a special focus on soil gaseous losses, and the calculation of respective element balances. A further focus in this thesis was rainfall, a valuable resource for rain-fed agriculture in the Nuba Mountains. To minimize negative consequences of the high variability of rainfall, risk reducing mechanisms were developed by rain-fed farmers that may lose their efficacy in the course of climate change effects predicted for East Africa. Therefore, the second objective of this study was to examine possible changes in rainfall amounts during the last 60 years and to provide reliable risk and probability statements of rainfall-induced events of agricultural importance to rain-fed farmers in the Nuba Mountains. Soil gaseous emissions of C (in form of CO2) and N (in form of NH3 and N2O) of two traditional and two intensified homegardens were determined with a portable dynamic closed chamber system. For C gaseous emission rates reached their peak at the onset of the rainy season (2,325 g CO2-C ha-1 h-1 in an intensified garden type) and for N during the rainy season (16 g NH3-N ha-1 h-1 and 11.3 g N2O-N ha-1 h-1, in a traditional garden type). Data indicated cumulative annual emissions of 5,893 kg CO2-C ha-1, 37 kg NH3-N ha-1, and 16 kg N2O-N ha-1. For the assessment of the long-term productivity of the two types of homegardens and the identification of pathways of substantial element losses, a C and nutrient budget approach was used. In three traditional and three intensified homegardens observation plots were selected. The following variables were quantified on each plot between June and December in 2010: soil amendments, irrigation, biomass removal, symbiotic N2 fixation, C fixation by photosynthesis, atmospheric wet and dry deposition, leaching and soil gaseous emissions. Annual balances for C and nutrients amounted to -21 kg C ha-1, -70 kg N ha-1, 9 kg P ha-1 and -117 kg K ha-1 in intensified homegardens and to -1,722 kg C ha-1, -167 kg N ha-1, -9 kg P ha-1 and -74 kg K ha-1 in traditional homegardens. For the analysis of rainfall data, the INSTAT+ software allowed to aggregate long-term daily rainfall records from the Kadugli and Rashad weather stations into daily, monthly and annual intervals and to calculate rainfall-induced events of agricultural importance. Subsequently, these calculated values and events were checked for possible monotonic trends by Mann-Kendall tests. Over the period from 1970 to 2009, annual rainfall did not change significantly for either station. However, during this period an increase of low rainfall events coinciding with a decline in the number of medium daily rainfall events was observed in Rashad. Furthermore, the availability of daily rainfall data enabled frequency and conditional probability calculations that showed either no statistically significant changes or trends resulting only in minor changes of probabilities.