8 resultados para beam-foil technique

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In continuation of our previous work on the quintet transitions 1s2s2p^2 ^5 P-1s2s2p3d ^5 P^0, ^5 D^0, results on other n = 2 - n' = 3 quintet transitions for elements N, 0 and F are presented. Assignments have been established by comparison with Multi-Configuration Dirac-Fock calculations. High spectral resolution on beam-foil spectroscopy was essential for the identification of most of the lines. For some of the quintet lines decay curves were measured, and the lifetimes extracted were found to be in reasonable agreement with MCDF calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy spectra of electrons ejected from collisions between a carbon foil and Ne projectiles with energies between 1.4 and 20 MeV have been measured. Continuous and discrete electron energy distributions are observed. Auger transitions of foil-excited Ne have been studied. Using relativistic Dirac-Fock multiconfiguration calculations, most of the measured Auger transitions have been identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Augerelectron emission from foil-excited Ne-ions (6 to 10 MeV beam energy) has been measured. The beam-foil time-of-flight technique has been applied to study electronic transitions of metastable states (delayed spectra) and to determine their lifetimes. To achieve a line identification for the complex structure observed in the prompt spectrum, the spectrum is separated into its isoelectronic parts by an Augerelectron-ion coincidence correlating the emitted electrons and the emitting projectiles of well defined final charge states q_f. Well resolved spectra were obtained and the lines could be identified using intermediate coupling Dirac-Fock multiconfiguration calculations. From the total KLL-Augerelectron transition probabilities observed in the electronion coincidence experiment for Ne (10 MeV) the amount of projectiles with one K-hole just behind a C-target can be estimated. For foil-excited Ne-projectiles in contrast to single collision results the comparison of transition intensities for individual lines with calculated transition probabilities yields a statistical population of Li- and Be-like configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Scanning Probe Microscopy (SPM) has become of fundamental importance for research in area of micro and nano-technology. The continuous progress in these fields requires ultra sensitive measurements at high speed. The imaging speed limitation of the conventional Tapping Mode SPM is due to the actuation time constant of piezotube feedback loop that keeps the tapping amplitude constant. In order to avoid this limit a deflection sensor and an actuator have to be integrated into the cantilever. In this work has been demonstrated the possibility of realisation of piezoresistive cantilever with an embedded actuator. Piezoresistive detection provides a good alternative to the usual optical laser beam deflection technique. In frames of this thesis has been investigated and modelled the piezoresistive effect in bulk silicon (3D case) for both n- and p-type silicon. Moving towards ultra-sensitive measurements it is necessary to realize ultra-thin piezoresistors, which are well localized to the surface, where the stress magnitude is maximal. New physical effects such as quantum confinement which arise due to the scaling of the piezoresistor thickness was taken into account in order to model the piezoresistive effect and its modification in case of ultra-thin piezoresistor (2D case). The two-dimension character of the electron gas in n-type piezoresistors lead up to decreasing of the piezoresistive coefficients with increasing the degree of electron localisation. Moreover for p-type piezoresistors the predicted values of the piezoresistive coefficients are higher in case of localised holes. Additionally, to the integration of the piezoresistive sensor, actuator integrated into the cantilever is considered as fundamental for realisation of fast SPM imaging. Actuation of the beam is achieved thermally by relying on differences in the coefficients of thermal expansion between aluminum and silicon. In addition the aluminum layer forms the heating micro-resistor, which is able to accept heating impulses with frequency up to one megahertz. Such direct oscillating thermally driven bimorph actuator was studied also with respect to the bimorph actuator efficiency. Higher eigenmodes of the cantilever are used in order to increase the operating frequencies. As a result the scanning speed has been increased due to the decreasing of the actuation time constant. The fundamental limits to force sensitivity that are imposed by piezoresistive deflection sensing technique have been discussed. For imaging in ambient conditions the force sensitivity is limited by the thermo-mechanical cantilever noise. Additional noise sources, connected with the piezoresistive detection are negligible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In continuation of our previous work on doubly-excited ions with three and four electrons we present the first results on optical transitions in the term system of doubly-excited ions with five electrons. Transitions between such sextet states were identified in beam-foil spectra of the ions nitrogen, oxygen and fluorine. Assignments were first established by comparison with Multi-Configuration Dirac-Fock calculations. Later assignments were aided by Multi-Configuration Hartree-Fock calculations (see the contribution by G. Miecznik et al. in this issue). Decay curves were recorded for all six candidate lines. The lifetime results are compared to theoretical values which confirm most of the assignments qualitatively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of the Auger decay of beam-foil excited Be II and Be I levels are reported along with a proposed assignment of the experimental spectra. The Li I, Be II and Be III (1s 2s^2) ^2 S \rightarrow (1s^2 2s)^2 S Auger transitions as presented in this letter represents the first observation of such states in positive ions with Z \le 5.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following an earlier observation in F VI we identified the line pair 1s2s2p^2 {^5P}-1s2s2p3d {^5P^0} , {^5D^0} for the elements N, O, Mg, and tentatively for A1 and Si in beam-foil spectra. Assignment was established by comparison with Multi-Configuration Dirac-Fock calculations along the isoelectronic sequence. Using this method we also identified some quartet lines of lithium-like ions with Z > 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main focus and concerns of this PhD thesis is the growth of III-V semiconductor nanostructures (Quantum dots (QDs) and quantum dashes) on silicon substrates using molecular beam epitaxy (MBE) technique. The investigation of influence of the major growth parameters on their basic properties (density, geometry, composition, size etc.) and the systematic characterization of their structural and optical properties are the core of the research work. The monolithic integration of III-V optoelectronic devices with silicon electronic circuits could bring enormous prospect for the existing semiconductor technology. Our challenging approach is to combine the superior passive optical properties of silicon with the superior optical emission properties of III-V material by reducing the amount of III-V materials to the very limit of the active region. Different heteroepitaxial integration approaches have been investigated to overcome the materials issues between III-V and Si. However, this include the self-assembled growth of InAs and InGaAs QDs in silicon and GaAx matrices directly on flat silicon substrate, sitecontrolled growth of (GaAs/In0,15Ga0,85As/GaAs) QDs on pre-patterned Si substrate and the direct growth of GaP on Si using migration enhanced epitaxy (MEE) and MBE growth modes. An efficient ex-situ-buffered HF (BHF) and in-situ surface cleaning sequence based on atomic hydrogen (AH) cleaning at 500 °C combined with thermal oxide desorption within a temperature range of 700-900 °C has been established. The removal of oxide desorption was confirmed by semicircular streaky reflection high energy electron diffraction (RHEED) patterns indicating a 2D smooth surface construction prior to the MBE growth. The evolution of size, density and shape of the QDs are ex-situ characterized by atomic-force microscopy (AFM) and transmission electron microscopy (TEM). The InAs QDs density is strongly increased from 108 to 1011 cm-2 at V/III ratios in the range of 15-35 (beam equivalent pressure values). InAs QD formations are not observed at temperatures of 500 °C and above. Growth experiments on (111) substrates show orientation dependent QD formation behaviour. A significant shape and size transition with elongated InAs quantum dots and dashes has been observed on (111) orientation and at higher Indium-growth rate of 0.3 ML/s. The 2D strain mapping derived from high-resolution TEM of InAs QDs embedded in silicon matrix confirmed semi-coherent and fully relaxed QDs embedded in defectfree silicon matrix. The strain relaxation is released by dislocation loops exclusively localized along the InAs/Si interfaces and partial dislocations with stacking faults inside the InAs clusters. The site controlled growth of GaAs/In0,15Ga0,85As/GaAs nanostructures has been demonstrated for the first time with 1 μm spacing and very low nominal deposition thicknesses, directly on pre-patterned Si without the use of SiO2 mask. Thin planar GaP layer was successfully grown through migration enhanced epitaxy (MEE) to initiate a planar GaP wetting layer at the polar/non-polar interface, which work as a virtual GaP substrate, for the GaP-MBE subsequently growth on the GaP-MEE layer with total thickness of 50 nm. The best root mean square (RMS) roughness value was as good as 1.3 nm. However, these results are highly encouraging for the realization of III-V optical devices on silicon for potential applications.