13 resultados para alfalfa silage

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis consists of 4 main parts: (1) impact of growing maize on the decomposition of incorporated fresh alfalfa residues, (2) relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab, (3) decomposition of compost and plant residues in Pakistani soils along a gradient in salinity, and (4) interactions of compost and triple superphosphate on the growth of maize in a saline Pakistani soil. These 4 chapters are framed by a General Introduction and a Conclusions section. (1) In the first study, the effects of growing maize plants on the microbial decomposition of freshly chopped alfalfa residues was investigated in a 90-day pot experiment using a sandy arable soil. Assuming that the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 27% of the alfalfa residues were found as CO2. This suggests that a considerable part of alfalfa-C remained undecomposed in the soil. However, only 6% of the alfalfa residues could be recovered as plant remains in treatment with solely alfalfa residues. Based on d13C values, it was calculated that plant remains in treatment maize + alfalfa residues contained 14.7% alfalfa residues and 85.3% maize root remains. This means 60% more alfalfa-C was recovered in this treatment. (2) In the second study, the interactions between soil physical, soil chemical and soil biological properties were analysed in 30 Pakistani soils from alkaline and saline arable sites differing strongly in salinisation and in soil pH. The soil biological properties were differentiated into indices for microbial activity, microbial biomass, and community structure with the aim of assessing their potential as soil fertility indices. (3) In the third study, 3 organic amendments (compost, maize straw and pea straw) were added to 5 Pakistani soils from a gradient in salinity. Although salinity has depressive effects on microbial biomass C, biomass N, biomass P, and ergosterol, the clear gradient according to the soil salt concentration was not reflected by the soil microbial properties. The addition of the 3 organic amendments always increased the contents of the microbial indices analysed. The amendment-induced increase was especially strong for microbial biomass P and reflected the total P content of the added substrates. (4) The fourth study was greenhouse pot experiment with different combinations of compost and triple superphosphate amendments to investigate the interactions between plant growth, microbial biomass formation and compost decomposition in a strongly saline Pakistani arable soil in comparison to a non-saline German arable soil. The Pakistani soil had a 2 times lower content of ergosterol, a 4 times lower contents of microbial biomass C, biomass N and biomass P, but nearly a 20 times lower content of NaHCO3 extractable P. The addition of 1% compost always had positive effects on the microbial properties and also on the content of NaHCO3 extractable P. The addition of superphosphate induced a strong and similar absolute increase in microbial biomass P in both soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To unravel the settlement history of oases in northern Oman, data on topography, the agricultural setting, water and soil parameters and archaeological findings were collected in the Wadi Bani Awf with its head oasis Balad Seet. Data collection lasted from April 2000 to April 2003 and was based on the establishment of a 3D-georeferenced map of the oasis comprising all its major infrastructural and agronomic features. At today's Balad Seet, a total of 8.8 ha are planted to 2,800 date palms and 4.6 ha are divided into 385 small fields dedicated to wheat, barley, sorghum, oats, alfalfa, garlic, onion, lime and banana. Radiocarbon dating of charcoal in the lower part of the main terrace system determined its age to 911 ± 43 years. Monthly flow measurements of four major aflaj systems showed a total maximum flow of 32 m^3 h^-1 with the largest falaj contributing 78% of the total flow. During drought periods, average water flow decreased by 3% per month, however, with significant differences between the spring systems. The analysis of the tritium/^3helium ratio in the water led to an estimated water age of up to 10 years. In combination with the flow data, this provided insights into the elasticity of the spring flow over time. The use of the natural resources of the Wadi Bani Awf by a pastoral population started probably in the early 3rd millennium BC. The first permanent settlement might have been established at Balad Seet during the first part of the 1st millennium BC. Presumably it was initiated by settlers from al-Hamra, a village at the southern foot of the Hajar mountains. Given an abundant und stable flow of springs, even in periods of drought, the construction of Balad Seet's first irrigation systems may have occurred at this early time. The combination of topographic, agricultural, hydro-pedological and archaeological data allowed assessment of the carrying capacity of this oasis over the three millennia of its likely existence. The changing scarcity of land and water and the eventual optimisation of their use by different aflaj constructions have been major driving forces for the development and apparent relativeley stable existence of this oasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about the sustainability of irrigated oasis agriculture in northern Oman. The objective of this study therefore was to examine which factors allowed agricultural productivity to be apparently maintained during the two millenia of a mountain oasis’ existence. Soil moisture and physico-chemical properties were measured in a typical flood-irrigated field sown to alfalfa (Medicago sativa L.). Particle size, organic (C_org) and inorganic carbon content, pH and electrical conductivity (EC)of the soil profile were analyzed at 0.15, 0.45 and 1.00 m. Saturated hydraulic conductivity and the soil’s apparent bulk density and water potential were determined from undisturbed samples at 0.05, 0.25 and 0.60 m. During irrigation cycles of 6–9 days, volumetric water contents ranged from 30% to 13%. A tracer experiment with potassium bromide revealed that 52–56% of the irrigation water was stored in the upper 0.4 m of the soil. The rest of the water moved further down the profile, thus providing the necessary drainage to avoid the build-up of toxic salt concentrations. Due to differences in pore size, plant-available water in the topsoil amounted to 18.7% compared to 13% and 13.5% at 0.25- and 0.60-m depth, respectively. The aggregate structure in the upper 1.0 m of the profile is likely preserved by concentrations of calcium carbonate (CaCO3) from 379 to 434 mg kg^-1 and C_org from 157 to 368 mg kg^-1 soil. The data indicate that the sustainability of this irrigated landuse system is due to high water quality with low sodium but high CaCO3 concentration, the elaborate terrace structure and water management which allows adequate drainage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about nutrient fluxes as a criterion to assess the sustainability of traditional irrigation agriculture in eastern Arabia. In this study GIS-based field research on terraced cropland and groves of date palm (Phoenix dactylifera L.) was conducted over 2 years in two mountain oases of northern Oman to determine their role as hypothesized sinks for nitrogen (N), phosphorus (P) and potassium (K). At Balad Seet 55% of the 385 fields received annual inputs of 100–500 kg N ha^-1 and 26% received 500–1400 kg N ha^-1. No N was applied to 19% of the fields which were under fallow. Phosphorus was applied annually at 1–90 kg ha^-1 on 46% of the fields, whereas 27% received 90–210 kg ha^-1. No K was applied to 27% of the fields, 32% received 1–300 kg K ha^-1, and the remaining fields received up to 1400 kg ha^-1. At Maqta N-inputs were 61–277 kg ha^-1 in palm groves and 112–225 kg ha^-1 in wheat (Triticum spp.) fields, respective P inputs were 9–40 and 14–29 kg ha^-1, and K inputs were 98–421 and 113–227 kg ha^-1. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare surpluses of 131 kg N, 37 kg P, and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. This was despite the fact that N2-fixation by alfalfa (Medicago sativa L.), estimated at up to 480 kg ha^-1 yr^-1 with an average total dry matter of 22 t ha^-1, contributed to the cropland N-balance only at the former site. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 much higher at Balad Seet than with 84 kg N, 14 kg P, and 91 kg K ha^-1 at Maqta. The data show that both oases presently are large sinks for nutrients. Potential gaseous and leaching losses could at least partly be controlled by a decrease in nutrient input intensity and careful incorporation of manure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about plant biodiversity, irrigation management and nutrient fluxes as criteria to assess the sustainability of traditional irrigation agriculture in eastern Arabia. Therefore interdisciplinary studies were conducted over 4 yrs on flood-irrigated fields dominated by wheat (Triticum spp.), alfalfa (Medicago sativa L.) and date palm (Phoenix dactylifera L.) in two mountain oases of northern Oman. In both oases wheat landraces consisted of varietal mixtures comprising T. aestivum and T. durum of which at least two botanical varieties were new to science. During irrigation cycles of 6-9 days on an alfalfa-planted soil, volumetric water contents ranged from 30-13%. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare annual surpluses of 131 kg N, 37 kg P and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 yr^-1 much higher at Balad Seet than with 84 kg N, 14 kg P and 91 kg K ha^-1 yr^-1 at Maqta. The results show that the sustainability of these irrigated landuse systems depends on a high quality of the irrigation water with low Na but high CaCO3, intensive recycling of manure and an elaborate terrace structure with a well tailored water management system that allows adequate drainage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung: Ziel der Arbeit war ein Methodenvergleich zur Beurteilung der Milchqualität unterschiedlicher Herkünfte. Am Beispiel von Milchproben aus unterschiedlicher Fütterung sowie an Milchproben von enthornten bzw. horntragenden Kühen wurde geprüft, welche der angewendeten Methoden geeignet ist, die Vergleichsproben zu unterscheiden (Differenzierungsfähigkeit der Methoden) und inwieweit eine Qualitätsbeurteilung möglich ist (hinsichtlich Milchleistung, Fett-, Eiweiß-, Lactose- (=F,E,L), Harnstoff-gehalt und Zellzahl (=SCC), Säuerungseigenschaften (=SE), Fettsäuremuster (=FS-Muster), Protein- und Metabolit-Zusammensetzung (=Pr&M), Fluoreszenz-Anregungs-Spektroskopie-Eigenschaften (=FAS) und Steigbild-Merkmalen). Zusätzlich wurde vorab die Steigbildmethode (=SB-M) für das Produkt Rohmilch standardisiert und charakterisiert, um die Reproduzierbarkei der Ergebnisse sicherzustellen. Die Untersuchungen zur SB-M zeigten, dass es Faktoren gibt, die einen deutlichen Einfluß auf die Bildmerkmals-Ausprägung aufweisen. Dazu gehören laborseitig die Klimabedingungen in der Kammer, die Verdünnungsstufe der Probe, die Standzeiten der Vorverdünnung (Reaktionen mit der Luft, Alterung usw.), und tagesspezifisch auftretende Effekte, deren Ursache unbekannt ist. Probenseitig sind sehr starke tierindividuelle Effekte auf die Bildmerkmals-Ausprägung festzustellen, die unabhängig von Fütterung, Alter, Laktationsstadium und Genetik auftreten, aber auch Fütterungsbedingungen der Kühe lassen sich in der Bildmerkmals-Ausprägung wiederfinden. Die Art der Bildauswertung und die dabei berücksichtigten Bildmerkmale ist von großer Bedeutung für das Ergebnis. Die im Rahmen dieser Arbeit untersuchten 46 Probenpaare (aus den Fütterungsvergleichen (=FV) und zur Thematik der Hörner) konnten in 91% der Fälle korrekt gruppiert werden. Die Unterschiede konnten benannt werden. Drei FV wurden auf drei biologisch-dynamischen Höfen unter Praxis-Bedingungen durchgeführt (on-farm-Experimente). Es wurden jeweils zwei vergleichbare Gruppen à mindestens 11 Kühen gebildet, die im Cross-Over-Design gefüttert wurden, mit Probennahme am 14. und 21. Tag je Periode. Es wurden folgende FV untersucht: A: Wiesenheu vs. Kleegrasheu (=KG-Heu), B: Futterrüben (=FuR) vs. Weizen (Ergänzung zu Luzernegrasheu ad lib.), C: Grassilage vs. Grasheu. Bei Versuch A sind die Futtereffekte am deutlichsten, Gruppeneffekte sind gering. Die Milch der Wiesenheu-Variante hat weniger CLA’s und n3- FS und mehr mittellangkettige FS (MCT-FS), das Pr&M-Muster weist auf „Gewebereifung und Ausdifferenzierung“ vs. bei KG-Heu „Nährstoff-fülle, Wachstum und Substanz-Einlagerung und die SB zeigen fein ausdifferenzierte Bildmerkmale. Bei Versuch B sind die Futtereffekte ähnlich groß wie die Gruppeneffekte. Bei vergleichbarer Milchleistung weist die Milch der FuR-Variante höhere F- und E-Gehalte auf, sie säuert schneller und mehr, das FS-Muster weist auf eine „intensive“ Fütterung mit vermehrt MCT- FS, und die Pr&M-Untersuchungen charakterisieren sie mit „Eisentransport und Fetttröpfchenbildung“ vs. bei Weizen „mehr Abwehr-, Regulations- und Transportfunktion“ /. „mehr Lipidsynthese“. Die SB charakterisieren mit „große, kräftige Formen, verwaschen“ vs. „kleine, ausdifferenzierte Bildmerkmal“ für FuR vs. Weizen. Die FAS charakterisiert sie mit „Saftfutter-typisch“ vs. „Samentypisch“. Versuch C weist die geringsten Futtereffekt auf, und deutliche Gruppen- und Zeiteffekte. Milchleistung und F,E,L-Gehalte zeigen keinen Futtereffekt. Die Milch der Heu-Variante säuert schneller, und sie weist mehr SCT und MCT- FS auf. Pr&M-Untersuchungen wurden nicht durchgeführt. Die SB charakterisieren bei Heumilch mit „fein, zart, durchgestaltet, hell“, bei Silagemilch mit „kräftig, wäßrig-verwaschen, dunkler“. Die FAS kann keine konsistenten Unterschiede ermitteln. Der Horn-Einfluß auf die Milchprobe wurde an 34 Probenpaaren untersucht. Von 11 Höfen wurden je zwei möglichst vergleichbare Gruppen zusammengestellt, die sich nur im Faktor „Horn“ unterscheiden, und im wöchentlichen Abstand drei mal beprobt. F,E,L, SCC und SE der Proben sowie die FAS-Messungen weisen keine konsistenten signifikanten Unterschiede zwischen den Horn-Varianten auf. Pr&M weisen bei den untersuchten Proben (von zwei Höfen) auf Horneffekte hin: bei Eh eine Erhöhung von Immun-Abwehr-Funktionen, sowie einer Abnahme phosphorylierter C3- und C6-Metabolite und Beta-Lactoglobulin. Mit den SB ließen sich für die gewählten Merkmale (S-Größe und g.B.-Intensität) keine Horneffekte feststellen. FS, Pr&M-Muster sowie Harnstoffgehalt und SB (und z.T. Milchleistung) zeigten je FV ähnliche Effekt-Intensitäten für Futter-, Gruppen- und Zeiteffekte, und konnten die Cross-Over-Effekte gut wiedergeben. F- und E-Gehalte konnten neben tierindividuellen Effekten nur in FV B auch Futtereffekte aufzeigen. In FV C zeigten die SE der Proben den deutlichsten Futtereffekt, die anderen Methoden zeigten hier vorrangig Gruppen-Effekte, gefolgt von Futter- und Zeiteffekten. Die FAS zeigte den SB vergleichbare Ergebnisse, jedoch weniger sensibel reagierend. Die Interpretation von Qualitätsaspekten war bei konsistent differenzierbaren Proben (FV A, B, C) am fundiertesten mit Hilfe der FS möglich, da über die Synthese von FS und beeinflussende Faktoren schon vielfältige Erkenntnisse vorliegen. Das Pr&M-Muster war nach einer weiteren Methodenentwicklung bei der Deutung von Stoffwechselprozessen sehr hilfreich. Die FAS konnte z.T. eine zu der Fütterungsvariante passende Charakterisierung liefern. Für die SB-M fehlt es noch an Referenzmaterial, um Angaben zu Qualitätsaspekten zu machen, wenngleich Probenunterschiede aufgezeigt und Proben-Eigenschaften charakterisiert werden konnten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Mikrobiota im Gastrointestinaltrakt (GIT) spielt eine bedeutende Rolle beim Fermentationsprozess im Bezug auf die Nährstoffversorgung sowie die Gesundheit des Darms und des gesamten Organismus. Inulin und resistente Stärke (RS) konnten als präbiotisch wirksame Substanzen identifiziert werden und sind jeweils auch in den Knollen der Topinamburpflanze (Helianthus tuberosus) und in Kartoffeln (Solanum tuberosum) enthalten. Da sie ebenfalls energiereiche Futtermittel für Schweine sind, war es das Ziel der ersten beiden Studien, die Auswirkungen der Aufnahme von Topinamburknollen und Kartoffeln auf die intestinale Mikrobiota und Parameter des Immunsystems bei Endmastschweinen zu bestimmen. In der dritten Studie wurde die mikrobielle Biomasse quantitativ mit einem Verfahren zur Isolation von Bakterien in einer Flüssigkeit durch Hochgeschwindigkeits-Zentrifugation erfasst und der bakteriell gebundene Stickstoff (MP-N) mit dem bakteriellen und endogenem Kotstickstoff (BEDN) verglichen. Im ersten Versuch wurden 72 Endmastschweine in einem Freilandhaltungssystem in eine Kontroll- (CT), die mit Kraftfutter entsprechend des Bedarfs der Tiere für ein Leistungsniveau von 700 g täglichem Lebendmassezuwachs versorgt wurde, und eine Versuchsvariante (ET) aufgeteilt. In der Versuchsvariante erhielten die Tiere nur 70% der Kraftfuttermenge der Kontrollvariante, hatten aber Zugang zu einer abgeteilten Fläche, auf der Topinamburknollen angebaut waren. Die freie Aufnahme von Topinamburknollen wurde auf 1•24 kg Trockenmasse (TM)/Tag bestimmt, entsprechend einer Inulinaufnahme von durchschnittlich 800 g/Tag. Während sich die Wachstumsleistung in der Kontrollvariante auf 0•642 ± 0•014 kg/Tag belief, war sie in der Versuchsvariante mit 0•765 ± 0•015 kg/Tag (P=0•000) höher. Die freie Verfügbarkeit von Inulin und Fructo-oligosacchariden (FOS) im GIT der Schweine erhöhte die Keimzahlen der anaeroben Bakterien (P=0•000), Laktobazillen (P=0•046) und Hefen (P=0•000) signifikant und verringerte das Vorkommen von Clostridium perfringens im Schweinekot erheblich von lg 5•24 ± 0•17 kolonie-bildende Einheiten pro g Frischmasse (KbE/ g FM) in der Kontrollvariante auf lg 0•96 ± 0•20 KbE/ g FM in der Versuchsvariante (P=0•000). C-reaktives Protein (CRP) und Antikörper gegen Lipopolysaccharide (LPS) von Escherichia coli J5 ließen keine Unterschiede zwischen den Fütterungsvarianten erkennen. In der zweiten Untersuchung wurden 58 Endmastschweine einer Kontrollvariante (CT), die bedarfsgerecht mit einer Kraftfuttermischung für ein Leistungsniveau von 700 g Tageszunahmen gefüttert wurde, und zwei Versuchsvarianten zugeteilt. Die Versuchsvarianten erhielten eine Menge von 1•2 kg TM gedämpften Kartoffeln (potato treatment, PT) oder gedämpften und einsilierten Kartoffeln (silage treatment, ST) pro Tag und nur 46% bzw. 43% der Menge des Kraftfutters der Kontrollvariante. Die Wachstumsleistung und Schlachtkörperzusammensetzung ließen keine signifikanten Unterschiede zwischen den Varianten erkennen. Im PT und ST waren gegenüber dem CT im Kot der pH-Wert sowie die Gehalte von TM, Neutral-Detergenz-Faser (NDF), unverdautem Futterstickstoff (UDN) und teilweise von Säure-Detergenz-Faser (ADF) signifikant niedriger (P=0•000) und die von Ammonium (NH4) und Ammoniumstickstoff (NH4-N) signifikant höher (P=0•000). Das hohe Angebot von hitzebehandelten Kartoffeln führte zu einer erheblichen Verringerung von E. coli (P=0•000), C. perfringens (P=0•000) und Immunoglobulin A gegen LPS von E. coli J5 (P=0•001). Darüber hinaus waren in der ersten Versuchsperiode im ST die aeroben und anaeroben Gesamtkeimzahlen sowie die Laktobazillen und Hefen gegenüber dem PT signifikant erhöht. Die Unterschiede in der Mikrobiota zwischen der Kontroll- und Versuchsvarianten weisen auf die positiven Auswirkungen von Topinamburknollen und hitzebehandelten Kartoffeln auf die Mikrobiota im hinteren Darmabschnitt hin. Das Ziel der dritten Untersuchung war die Modifizierung des Verfahrens zur Isolation von Bakterien in einer Flüssigkeit mittels verschiedener Zentrifugationsschritte, um ein mikrobielles Pellet (MP) zu erhalten, welches die quantitative Abtrennung und Erfassung der Bakterien in Schweinekot ermöglicht. Zusätzlich wurde der BEDN Anteil sowie die Gehalte der Aminozucker Galactosamin, Glucosamin, Mannosamin und Muraminsäure im Kot und im MP bestimmt. Die untersuchten Kotproben stammten von Schweinen eines Phosphor (P) Stoffwechselversuch. Zehn männlich-kastrierte Schweine mit einem durchschnittlichen Lebendgewicht von 51•1 ± 8•5 kg wurden einzeln in Stoffwechselkäfigen gehalten. Die Tiere wurden fünf Fütterungsvarianten zugeteilt, die dem Bedarf der Tiere für ein Leistungsniveau von 700 g Tageszunahmen entsprachen, in den Rationen 2 bis 5 jedoch eine P-Gehalt unter dem Tagesbedarf der Tiere aufwiesen und in den Rationen 3 bis 5 mit abgestuften Gehalten von 50, 100 sowie 200 mg/kg einer experimentellen Phytase ergänz waren. Die Absenkung des P Gehaltes im Futter verringerte den Asche- (P=0•024) und Trockenmassegehalt im Kot (P=0•017) sowie die P Konzentration im MP (P=0•000) signifikant. Die mikrobielle Biomasse im Kot wurde durch die Wiegung des MP auf durchschnittlich 467 g/kg TM bestimmt. Der Stickstoffgehalt im Kot betrug im Mittel 46•1 g/kg TM und der in die Bakterienmasse eingebaute Stickstoffanteil 27•1 g/kg TM bzw. 58% vom Gesamtstickstoffgehalt im Kot. Die BEDN Fraktion wurde auf 73% am Kotstickstoff bestimmt. Der P-Gehalt im Kot sowie der N Gehalt im MP mit durchschnittlichen 10•4 und 57•9 g/kg TM lagen im Bereich von Literaturangaben. Die P Gehalte im MP schwankten in Abhängigkeit von der Zugabe von Phytase signifikant (P=0•000) von 1•8 bis 4•8 g/kg TM. Die Aminozucker wiesen keine signifikanten unterschiede zwischen Fütterungsvarianten auf und lagen im Bereich von Werten von Rinderkot. Ergebnisse weisen darauf hin, dass die angewandte Methode zur direkten Quantifizierung der mikrobiellen Biomasse geeignet ist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitic weeds of the genera Striga, Orobanche, and Phelipanche pose a severe problem for agriculture because they are difficult to control and are highly destructive to several crops. The present work was carried out during the period October, 2009 to February, 2012 to evaluate the potential of arbuscular mycorrhizal fungi (AMF) to suppress P. ramosa on tomatoes and to investigate the effects of air-dried powder and aqueous extracts from Euphorbia hirta on germination and haustorium initiation in Phelipanche ramosa. The work was divided into three parts: a survey of the indigenous mycorrhizal flora in Sudan, second, laboratory and greenhouse experiments (conducted in Germany and Sudan) to construct a base for the third part, which was a field trial in Sudan. A survey was performed in 2009 in the White Nile state, Sudan to assess AMF spore densities and root colonization in nine fields planted with 13 different important agricultural crops. In addition, an attempt was made to study the relationship between soil physico-chemical properties and AMF spore density, colonization rate, species richness and other diversity indices. The mean percentage of AMF colonization was 34%, ranging from 19-50%. The spore densities (expressed as per 100 g dry soil) retrieved from the rhizosphere of different crops were relatively high, varying from 344 to 1222 with a mean of 798. There was no correlation between spore densities in soil and root colonization percentage. A total of 45 morphologically classifiable species representing ten genera of AMF were detected with no correlation between the number of species found in a soil sample and the spore density. The most abundant genus was Glomus (20 species). The AMF diversity expressed by the Shannon–Weaver index was highest in sorghum (H\= 2.27) and Jews mallow (H\= 2.13) and lowest in alfalfa (H\= 1.4). With respect to crop species, the genera Glomus and Entrophospora were encountered in almost all crops, except for Entrophospora in alfalfa. Kuklospora was found only in sugarcane and sorghum. The genus Ambispora was recovered only in mint and okra, while mint and onion were the only species on which no Acaulospora was found. The hierarchical cluster analysis based on the similarity among AMF communities with respect to crop species overall showed that species compositions were relatively similar with the highest dissimilarity of about 25% separating three of the mango samples and the four sorghum samples from all other samples. Laboratory experiments studied the influence of root and stem exudates of three tomato varieties infected by three different Glomus species on germination of P. ramosa. Root exudates were collected 21or 42 days after transplanting (DAT) and stem exudates 42 DAT and tested for their effects on germination of P. ramosa seeds in vitro. The tomato varieties studied did not have an effect on either mycorrhizal colonization or Phelipanche germination. Germination in response to exudates from 42 day old mycorrhizal plants was significantly reduced in comparison to non-mycorrhizal controls. Germination of P. ramosa in response to root exudates from 21 day old plants was consistently higher than for 42 day-old plants (F=121.6; P<.0001). Stem diffusates from non-mycorrhizal plants invariably elicited higher germination than diffusates from the corresponding mycorrhizal ones and differences were mostly statistically significant. A series of laboratory experiments was undertaken to investigate the effects of aqueous extracts from Euphorbia hirta on germination, radicle elongation, and haustorium initiation in P. ramosa. P. ramosa seeds conditioned in water and subsequently treated with diluted E. hirta extract (10-25% v/v) displayed considerable germination (47-62%). Increasing extract concentration to 50% or more reduced germination in response to the synthetic germination stimulants GR24 and Nijmegen-1 in a concentration dependent manner. P. ramosa germlings treated with diluted Euphorbia extract (10-75 % v/v) displayed haustorium initiation comparable to 2, 5-Dimethoxy-p-benzoquinon (DMBQ) at 20 µM. Euphorbia extract applied during conditioning reduced haustorium initiation in a concentration dependent manner. E. hirta extract or air-dried powder, applied to soil, induced considerable P. ramosa germination. Pot experiments were undertaken in a glasshouse at the University of Kassel, Germany, to investigate the effects of P. ramosa seed bank on tomato growth parameters. Different Phelipanche seed banks were established by mixing the parasite seeds (0 - 32 mg) with the potting medium in each pot. P. ramosa reduced all tomato growth parameters measured and the reduction progressively increased with seed bank. Root and total dry matter accumulation per tomato plant were most affected. P. ramosa emergence, number of tubercles, and tubercle dry weight increased with the seed bank and were, invariably, maximal with the highest seed bank. Another objective was to determine if different AM fungi differ in their effects on the colonization of tomatoes with P. ramosa and the performance of P. ramosa after colonization. Three AMF species viz. GIomus intraradices, Glomus mosseae and Glomus Sprint® were used in this study. For the infection, P. ramosa seeds (8 mg) were mixed with the top 5 cm soil in each pot. No mycorrhizal colonization was detected in un-inoculated control plants. P. ramosa infested, mycorrhiza inoculated tomato plants had significantly lower AMF colonization compared to plants not infested with P. ramosa. Inoculation with G. intraradices, G. mosseae and Glomus Sprint® reduced the number of emerged P. ramosa plants by 29.3, 45.3 and 62.7% and the number of tubercles by 22.2, 42 and 56.8%, respectively. Mycorrhizal root colonization was positively correlated with number of branches and total dry matter of tomatoes. Field experiments on tomato undertaken in 2010/12 were only partially successful because of insect infestations which resulted in the complete destruction of the second run of the experiment. The effects of the inoculation with AMF, the addition of 10 t ha-1 filter mud (FM), an organic residues from sugar processing and 36 or 72 kg N ha-1 on the infestation of tomatoes with P. ramosa were assessed. In un-inoculated control plants, AMF colonization ranged between 13.4 to 22.1% with no significant differences among FM and N treatments. Adding AMF or FM resulted in a significant increase of branching in the tomato plants with no additive effects. Dry weights were slightly increased through FM application when no N was applied and significantly at 36 kg N ha-1. There was no effect of FM on the time until the first Phelipanche emerged while AMF and N application interacted. Especially AMF inoculation resulted in a tendency to delayed P. ramosa emergence. The marketable yield was extremely low due to the strong fruit infestation with insects mainly whitefly Bemisia tabaci and tomato leaf miner (Tuta absoluta). Tomatoes inoculated with varied mycorrhiza species displayed different response to the insect infestation, as G. intraradices significantly reduced the infestation, while G. mosseae elicited higher insect infestation. The results of the present thesis indicate that there may be a potential of developing management strategies for P. ramosa targeting the pre-attachment stage namely germination and haustorial initiation using plant extracts. However, ways of practical use need to be developed. If such treatments can be combined with AMF inoculation also needs to be investigated. Overall, it will require a systematic approach to develop management tools that are easily applicable and affordable to Sudanese farmers. It is well-known that proper agronomical practices such as the design of an optimum crop rotation in cropping systems, reduced tillage, promotion of cover crops, the introduction of multi-microbial inoculants, and maintenance of proper phosphorus levels are advantageous if the mycorrhiza protection method is exploited against Phelipanche ramosa infestation. Without the knowledge about the biology of the parasitic weeds by the farmers and basic preventive measures such as hygiene and seed quality control no control strategy will be successful, however.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.