3 resultados para agility, power law, motion analysis, radius of curvature
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The rapid growth of the optical communication branches and the enormous demand for more bandwidth require novel networks such as dense wavelength division multiplexing (DWDM). These networks enable higher bitrate transmission using the existing optical fibers. Micromechanically tunable optical microcavity devices like VCSELs, Fabry-Pérot filters and photodetectors are core components of these novel DWDM systems. Several air-gap based tunable devices were successfully implemented in the last years. Even though these concepts are very promising, two main disadvantages are still remaining. On the one hand, the high fabrication and integration cost and on the other hand the undesired adverse buckling of the suspended membranes. This thesis addresses these two problems and consists of two main parts: • PECVD dielectric material investigation and stress control resulting in membranes shape engineering. • Implementation and characterization of novel tunable optical devices with tailored shapes of the suspended membranes. For this purposes, low-cost PECVD technology is investigated and developed in detail. The macro- and microstress of silicon nitride and silicon dioxide are controlled over a wide range. Furthermore, the effect of stress on the optical and mechanical properties of the suspended membranes and on the microcavities is evaluated. Various membrane shapes (concave, convex and planar) with several radii of curvature are fabricated. Using this resonator shape engineering, microcavity devices such as non tunable and tunable Fabry-Pérot filters, VCSELs and PIN photodetectors are succesfully implemented. The fabricated Fabry-Pérot filters cover a spectral range of over 200nm and show resonance linewidths down to 1.5nm. By varying the stress distribution across the vertical direction within a DBR, the shape and the radius of curvature of the top membrane are explicitely tailored. By adjusting the incoming light beam waist to the curvature, the fundamental resonant mode is supported and the higher order ones are suppressed. For instance, a tunable VCSEL with 26 nm tuning range, 400µW maximal output power, 47nm free spectral range and over 57dB side mode suppresion ratio (SMSR) is demonstrated. Other technologies, such as introducing light emitting organic materials in microcavities are also investigated.
Resumo:
The right to food has become a pillar of international humanitarian and human rights law. The increasing number of food-related emergencies and the evolution of the international order brought the more precise notion of food security and made a potential right to receive food aid emerge. Despite this apparent centrality, recent statistics show that a life free from hunger is for many people all over the world still a utopian idea. The paper will explore nature and content of the right to food, food security and food aid under international law in order to understand the reasons behind the substantial failure of this right-centred approach, emphasising the lack of legal effects of many food-related provisions because of excessive moral connotations of the right to be free from hunger. Bearing in mind the three-dimensional nature of food security, the paper will also suggest that all attention has been focused on the availability of food, while real difficulties arise in terms of accessibility and adequacy. Emergency situations provide an excellent example of this unbalance, as the emerging right to receive food aid focus itself on the availability of food, without improving local production and adequacy. Looking at other evolving sectors of international law, such as the protection of the environment, and particularly the safeguard of biological diversity, alternative solutions will be envisaged in order to “feed” the right to food.