8 resultados para adaptive technologies
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
We deal with the numerical solution of heat conduction problems featuring steep gradients. In order to solve the associated partial differential equation a finite volume technique is used and unstructured grids are employed. A discrete maximum principle for triangulations of a Delaunay type is developed. To capture thin boundary layers incorporating steep gradients an anisotropic mesh adaptation technique is implemented. Computational tests are performed for an academic problem where the exact solution is known as well as for a real world problem of a computer simulation of the thermoregulation of premature infants.
Resumo:
Die stereoskopische 3-D-Darstellung beruht auf der naturgetreuen Präsentation verschiedener Perspektiven für das rechte und linke Auge. Sie erlangt in der Medizin, der Architektur, im Design sowie bei Computerspielen und im Kino, zukünftig möglicherweise auch im Fernsehen, eine immer größere Bedeutung. 3-D-Displays dienen der zusätzlichen Wiedergabe der räumlichen Tiefe und lassen sich grob in die vier Gruppen Stereoskope und Head-mounted-Displays, Brillensysteme, autostereoskopische Displays sowie echte 3-D-Displays einteilen. Darunter besitzt der autostereoskopische Ansatz ohne Brillen, bei dem N≥2 Perspektiven genutzt werden, ein hohes Potenzial. Die beste Qualität in dieser Gruppe kann mit der Methode der Integral Photography, die sowohl horizontale als auch vertikale Parallaxe kodiert, erreicht werden. Allerdings ist das Verfahren sehr aufwendig und wird deshalb wenig genutzt. Den besten Kompromiss zwischen Leistung und Preis bieten präzise gefertigte Linsenrasterscheiben (LRS), die hinsichtlich Lichtausbeute und optischen Eigenschaften den bereits früher bekannten Barrieremasken überlegen sind. Insbesondere für die ergonomisch günstige Multiperspektiven-3-D-Darstellung wird eine hohe physikalische Monitorauflösung benötigt. Diese ist bei modernen TFT-Displays schon recht hoch. Eine weitere Verbesserung mit dem theoretischen Faktor drei erreicht man durch gezielte Ansteuerung der einzelnen, nebeneinander angeordneten Subpixel in den Farben Rot, Grün und Blau. Ermöglicht wird dies durch die um etwa eine Größenordnung geringere Farbauflösung des menschlichen visuellen Systems im Vergleich zur Helligkeitsauflösung. Somit gelingt die Implementierung einer Subpixel-Filterung, welche entsprechend den physiologischen Gegebenheiten mit dem in Luminanz und Chrominanz trennenden YUV-Farbmodell arbeitet. Weiterhin erweist sich eine Schrägstellung der Linsen im Verhältnis von 1:6 als günstig. Farbstörungen werden minimiert, und die Schärfe der Bilder wird durch eine weniger systematische Vergrößerung der technologisch unvermeidbaren Trennelemente zwischen den Subpixeln erhöht. Der Grad der Schrägstellung ist frei wählbar. In diesem Sinne ist die Filterung als adaptiv an den Neigungswinkel zu verstehen, obwohl dieser Wert für einen konkreten 3-D-Monitor eine Invariante darstellt. Die zu maximierende Zielgröße ist der Parameter Perspektiven-Pixel als Produkt aus Anzahl der Perspektiven N und der effektiven Auflösung pro Perspektive. Der Idealfall einer Verdreifachung wird praktisch nicht erreicht. Messungen mit Hilfe von Testbildern sowie Schrifterkennungstests lieferten einen Wert von knapp über 2. Dies ist trotzdem als eine signifikante Verbesserung der Qualität der 3-D-Darstellung anzusehen. In der Zukunft sind weitere Verbesserungen hinsichtlich der Zielgröße durch Nutzung neuer, feiner als TFT auflösender Technologien wie LCoS oder OLED zu erwarten. Eine Kombination mit der vorgeschlagenen Filtermethode wird natürlich weiterhin möglich und ggf. auch sinnvoll sein.
Resumo:
Die ubiquitäre Datenverarbeitung ist ein attraktives Forschungsgebiet des vergangenen und aktuellen Jahrzehnts. Es handelt von unaufdringlicher Unterstützung von Menschen in ihren alltäglichen Aufgaben durch Rechner. Diese Unterstützung wird durch die Allgegenwärtigkeit von Rechnern ermöglicht die sich spontan zu verteilten Kommunikationsnetzwerken zusammen finden, um Informationen auszutauschen und zu verarbeiten. Umgebende Intelligenz ist eine Anwendung der ubiquitären Datenverarbeitung und eine strategische Forschungsrichtung der Information Society Technology der Europäischen Union. Das Ziel der umbebenden Intelligenz ist komfortableres und sichereres Leben. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung charakterisieren sich durch Heterogenität der verwendeten Rechner. Diese reichen von Kleinstrechnern, eingebettet in Gegenstände des täglichen Gebrauchs, bis hin zu leistungsfähigen Großrechnern. Die Rechner verbinden sich spontan über kabellose Netzwerktechnologien wie wireless local area networks (WLAN), Bluetooth, oder UMTS. Die Heterogenität verkompliziert die Entwicklung und den Aufbau von verteilten Kommunikationsnetzwerken. Middleware ist eine Software Technologie um Komplexität durch Abstraktion zu einer homogenen Schicht zu reduzieren. Middleware bietet eine einheitliche Sicht auf die durch sie abstrahierten Ressourcen, Funktionalitäten, und Rechner. Verteilte Kommunikationsnetzwerke für die ubiquitäre Datenverarbeitung sind durch die spontane Verbindung von Rechnern gekennzeichnet. Klassische Middleware geht davon aus, dass Rechner dauerhaft miteinander in Kommunikationsbeziehungen stehen. Das Konzept der dienstorienterten Architektur ermöglicht die Entwicklung von Middleware die auch spontane Verbindungen zwischen Rechnern erlaubt. Die Funktionalität von Middleware ist dabei durch Dienste realisiert, die unabhängige Software-Einheiten darstellen. Das Wireless World Research Forum beschreibt Dienste die zukünftige Middleware beinhalten sollte. Diese Dienste werden von einer Ausführungsumgebung beherbergt. Jedoch gibt es noch keine Definitionen wie sich eine solche Ausführungsumgebung ausprägen und welchen Funktionsumfang sie haben muss. Diese Arbeit trägt zu Aspekten der Middleware-Entwicklung für verteilte Kommunikationsnetzwerke in der ubiquitären Datenverarbeitung bei. Der Schwerpunkt liegt auf Middleware und Grundlagentechnologien. Die Beiträge liegen als Konzepte und Ideen für die Entwicklung von Middleware vor. Sie decken die Bereiche Dienstfindung, Dienstaktualisierung, sowie Verträge zwischen Diensten ab. Sie sind in einem Rahmenwerk bereit gestellt, welches auf die Entwicklung von Middleware optimiert ist. Dieses Rahmenwerk, Framework for Applications in Mobile Environments (FAME²) genannt, beinhaltet Richtlinien, eine Definition einer Ausführungsumgebung, sowie Unterstützung für verschiedene Zugriffskontrollmechanismen um Middleware vor unerlaubter Benutzung zu schützen. Das Leistungsspektrum der Ausführungsumgebung von FAME² umfasst: • minimale Ressourcenbenutzung, um auch auf Rechnern mit wenigen Ressourcen, wie z.B. Mobiltelefone und Kleinstrechnern, nutzbar zu sein • Unterstützung für die Anpassung von Middleware durch Änderung der enthaltenen Dienste während die Middleware ausgeführt wird • eine offene Schnittstelle um praktisch jede existierende Lösung für das Finden von Diensten zu verwenden • und eine Möglichkeit der Aktualisierung von Diensten zu deren Laufzeit um damit Fehlerbereinigende, optimierende, und anpassende Wartungsarbeiten an Diensten durchführen zu können Eine begleitende Arbeit ist das Extensible Constraint Framework (ECF), welches Design by Contract (DbC) im Rahmen von FAME² nutzbar macht. DbC ist eine Technologie um Verträge zwischen Diensten zu formulieren und damit die Qualität von Software zu erhöhen. ECF erlaubt das aushandeln sowie die Optimierung von solchen Verträgen.
Resumo:
Facing the double menace of climate change threats and water crisis, poor communities have now encountered ever more severe challenges in ensuring agricultural productivity and food security. Communities hence have to manage these challenges by adopting a comprehensive approach that not only enhances water resource management, but also adapts agricultural activities to climate variability. Implemented by the Global Environment Facility’s Small Grants Programme, the Community Water Initiative (CWI) has adopted a distinctive approach to support demand-driven, innovative, low cost and community-based water resource management for food security. Experiences from CWI showed that a comprehensive, locally adapted approach that integrates water resources management, poverty reduction, climate adaptation and community empowerment provides a good model for sustainable development in poor rural areas.
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.
Resumo:
The aim of this paper is to emphasize the capacity and resilience of rural communities in regard to sustainable food security by adopting innovative approaches to irrigation. The shift from subsistence to commercial agriculture is promoted as a means to sustainable development. An analysis of the efficacy of irrigation schemes in Zimbabwe suggests that, in terms of providing sustainable agricultural production, they have neither been cost-effective nor have they provided long-term food security to their beneficiaries. This is certainly true of Shashe Scheme and most others in Beitbridge District. The Shashe Irrigation Scheme project represents a bold attempt at developing a fresh approach to the management of communal land irrigation schemes through a Private Public Community Partnership. The model illustrated represents a paradigm shift from subsistence agriculture to a system based on new technologies, market linkages and community ownership that build resilience and lead to sustainable food security and economic prosperity.