6 resultados para ZINCBLENDE SEMICONDUCTORS

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physikalische Grundlagenforschung und anwendungsorientierte physikalische Forschung auf den Gebieten nanoskaliger kristalliner und amorpher fester Körper haben in vielfacher Weise eine große Bedeutung. Neben dem Verständnis für die Struktur der Materie und die Wechselwirkung von Objekten von der Größe einiger Atome ist die Erkenntnis über die physikalischen Eigenschaften nanostrukturierter Systeme von hohem Interesse. Diese Forschung eröffnet die Möglichkeit, die mit der Mikroelektronik begonnene Miniaturisierung fortzusetzen und wird darüber hinaus neue Anwendungsfelder eröffnen. Das Erarbeiten der physikalischen Grundlagen der Methoden zur Herstellung und Strukturierung ist dabei zwingend notwendig, da hier Wirkungsprinzipien dominieren, die erst bei Strukturgrößen im Nanometerbereich auftreten oder hinreichend stark ausgeprägt sind. Insbesondere Halbleitermaterialien sind hier von großem Interesse. Die in dieser Arbeit untersuchten Resonatorstrukturen, die auf dem kristallinen Verbindungshalbleitermaterial GaInAsP/InP basieren, erschließen wichtige Anwendungsfelder im Bereich der optischen Datenübertragung sowie der optischen Sensorik. Hergestellt wird das Halbleitermaterial mit der Metallorganischen Gasphasenepitaxie. Die experimentell besimmten Kenngrößen lassen Rückschlüsse auf die Güte der Materialien, die quantenmechanischen Wirkungsprinzipien und die Bauelementcharakteristik zu und führen zu optimal angepassten Kristallstrukturen. Auf Basis dieser optimierten Materialien wurde ein durchstimmbarer Fabry-Perot-Filter hergestellt, der aus einer Kombination aus InP-Membranen und Luftspalten besteht und elektromechanisch aktuiert werden kann. Das GaInAsP dient hierbei als wenige hundert nm dicke Opferschicht, die ätztechnisch hochselektiv beseitigt wird. Die Qualität der Grenzflächen zum InP ist entscheidend für die Qualität der freigeätzten Kavitäten und damit für die mechanische Gesamtstabilität der Struktur. Der in dieser Arbeit beschriebene Filter hat eine Zentralwellenlänge im Bereich von 1550 nm und weist einen Durchstimmbereich von 221 nm auf. Erzielt wurde dieser Wert durch ein konsistentes Modell der wirkenden Verspannungskomponenten und einer optimierten epitaktischen Kontrolle der Verspannungsparameter. Das realisierte Filterbauelement ist vielversprechend für den Einsatz in der optischen Kommunikation im Bereich von WDM (wavelength division multiplexing) Anwendungen. Als weitere Resonatorstrukur wurde ein Asymmetrisch gekoppelter Quantenfilm als optisch aktives Medium, bestehend aus GaInAsP mit variierender Materialkomposition und Verspannung, untersucht, um sein Potential für eine breitbandige Emission zu untersuchen und mit bekannten Modellen zu vergleichen. Als Bauelementdesign wurde eine kantenemittierende Superlumineszenzleuchtdiode gewählt. Das Ergebnis ist eine Emissionskurve von 100 nm, die eine höhere Unabhängigkeit vom Injektionsstrom aufweist als andere bekannte Konzepte. Die quantenmechanischen Wirkungsprinzipien - im wesentlichen die Kopplung der beiden asymmetrischen Potentialtöpfe und die damit verbundene Kopplung der Wellenfunktionen - werden qualitativ diskutiert. Insgesamt bestätigt sich die Eignung des Materials GaInAsP auch für neuartige, qualitativ höchst anspruchsvolle Resonatorstrukturen und die Bedeutung der vorgestellten und untersuchten Resonatorkonzepte. Die vorgestellten Methoden, Materialien und Bauelemente liefern aufgrund ihrer Konzeption und der eingehenden experimentellen Untersuchungen einen Beitrag sowohl zu den zugrunde liegenden mechanischen, optoelektronischen und quantenmechanischen Wirkungsprinzipien der Strukturen, als auch zur Realisierung neuer optoelektronischer Bauelemente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es wurden die optischen Eigenschaften einiger Spirooligophenylverbindungen untersucht. Bei den Verbindungen handelte es sich um lineare und verzweigte Derivate des Spirobifluorens. Es wurden dünne amorphe Schichten der Verbindungen mittels spincoating und Vakuumverdampfen (OMBD) auf unterschiedlichen Substraten hergestellt. Mit spektroskopischer Ellipsometrie konnten die Schichtdicken und optische Konstanten der dünnen Schichten bestimmt werden. Dafür sind die Extinktionsspektren mit Tauc-Lorentz-Oszillatoren modelliert worden. Auf diese Weise ließen sich die optischen Konstanten der amorphen Filme besser beschreiben als mit den üblicherweise verwendeten Gauß-Oszillatoren. In dünnen Filmen von Spirosexiphenyl konnte uniaxiale Anisotropie nachgewiesen werden. Im Bereich der pie,pie*-Bande beträgt das Verhältnis des ordentlichen zum außerordentlichen Extinktionskoeffizienten 2.09. Mit einer Integrationskugel wurden die absoluten Quantenausbeuten der Fluoreszenz in festen Filmen bestimmt. Dafür ist ein vereinfachtes Verfahren der Auswertung entwickelt worden. Im Vergleich der untersuchten Substanzen zeigt sich, dass die Verbindungen mit dem Sexiphenyl-Chromophor höhere Quantenausbeuten im Festkörper haben (31 % - 48 %) als die Verbindungen mit Quaterphenyl als Chromophor (15 % - 30 %). In den beiden Klassen haben jeweils die sterisch anspruchsvollen Octopusvarianten die höchsten Festkörperquantenausbeuten. Durch verdünnen mit m,m-Spirosexiphenyl konnte die Quantenausbeute von p,p-Spirosexiphenyl in dünnen festen Filmen bis auf 65 % (95 % m,m- und 5 % p,p-Spirosexiphenyl) gesteigert werden. Eine Korrelation der Quantenausbeuten in Lösung und im festen, unverdünnten Film wurde nicht festgestellt. Als dünne Filme in Wellenleitergeometrie zeigen Spirooligophenyle bei optischer Anregung verstärkte spontane Emission (ASE). Dies manifestiert sich in einer Einengung des Emissionsspektrums mit zunehmender Pumpleistungsdichte. Auch für stimulierte Emission sind die Verbindungen mit Sexiphenylchromophor besser geeignet. Die niedrigste Schwelle in einer unverdünnten Reinsubstanz wurde mit 0.23 µJ/cm² in einer aufgeschleuderten Schicht Spirosexiphenyl gemessen. Auch 4-Spiro³, Spiro-SPO und Octo-2 zeigten niedrige ASE-Schwellen von 0.45 µJ/cm², 0.45 µJ/cm² und 0.5 µJ/cm². Die ASE-Schwellwerte von Spiroquaterphenyl und seinen beiden Derivaten Methoxyspiroquaterphenyl und Octo-1 sind mit 1.8 µJ/cm², 1.4 µJ/cm² und 1.2 µJ/cm² höher als die der Sexiphenylderivate. Im gemischten System aus m,m- und p,p-Spirosexiphenyl konnte die ASE-Schwelle noch weiter gesenkt werden. Bei einer Konzentration von 5 % p,p-Spirosexiphenyl wurde ein Schwellwert von nur 100 nJ/cm² bestimmt. Durch Dotierung mit unterschiedlichen Farbstoffen in Spirosexiphenyl als Matrix konnte ASE fast über den gesamten sichtbaren Spektralbereich gezeigt werden. Mit der „variable Streifenlänge“ (VSL-) -Methode wurden die pumpleistungsabhängigen Gainspektren dünner aufgedampfter Proben gemessen. Hieraus konnten die Wechselwirkungsquerschnitte der stimulierten Emission der Substanzen ermittelt werden. In Übereinstimmung mit den Verhältnissen bei den Festkörperfluoreszenzquantenausbeuten und den Schwellwerten der ASE sind auch bei den Gainkoeffizienten reiner Spirooligophenyle die besten Werte bei den Sexiphenylderivaten gefunden worden. Der Wirkungsquerschnitt der stimulierten Emission beträgt für Methylspiroquaterphenyl und Octo-1 ca. 1.8*10^-17 cm². Für Spiro-SPO und Spirosexiphenyl wurden Wirkungsquerschnitte von 7.5*10^-17 cm² bzw. 9.2*10^-17 cm² bestimmt. Noch etwas größer waren die Werte im gemischten System aus m,m- und p,p-Spirosexiphenyl (1.1*10^-16 cm²) und für DPAVB dotiert in Spirosexiphenyl (1.4*10^-16 cm²). Der höchste Maximalwert des Gainkoeffizienten von 328 cm-1 bei einer absorbierten Pumpenergiedichte von 149 µJ/cm² wurde mit Spirosexiphenyl erreicht. Abschließend wurden DFB-Laser-Strukturen mit reinen und dotierten Spirooligophenylverbindungen als aktiven Materialien vorgestellt. Mit Spiroterphenyl konnte ein DFB-Laser mit der bisher kürzesten Emissionswellenlänge (361.9 nm) in einem organischen Festkörperlaser realisiert werden. Mit reinen Spirooligophenylverbindungen und Mischungen daraus habe ich DFB-Lasing bei Wellenlängen zwischen 361.9 nm und 479 nm aufgezeigt. Durch Dotierung mit DPAVB wurde der Bereich der erreichbaren Wellenlängen bis 536 nm erweitert, bei gleichzeitiger Erniedrigung der Schwellenergiedichten für Lasertätigkeit. Bei Emissionswellenlängen von 495 nm bis 536 nm blieb die Laserschwelle zwischen 0.8 µJ/cm² und 1.1 µJ/cm². Diese Werte sind für DFB-Laser zweiter Ordnung sehr niedrig und geben Anlass zu glauben, dass sich mit DFB-Strukturen erster Ordnung Schwellen im Nanojoule Bereich erzielen lassen. Damit würde man den Bedingungen für elektrisch gepumpten Betrieb nahe kommen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diese Arbeit thematisiert die optimierte Darstellung von organischen Mikro- und Nanodrähten, Untersuchungen bezüglich deren molekularen Aufbaus und die anwendungsorientierte Charakterisierung der Eigenschaften. Mikro- und Nanodrähte haben in den letzten Jahren im Zuge der Miniaturisierung von Technologien an weitreichendem Interesse gewonnen. Solche eindimensionalen Strukturen, deren Durchmesser im Bereich weniger zehn Nanometer bis zu einigen wenigen Mikrometern liegt, sind Gegenstand intensiver Forschung. Neben anorganischen Ausgangssubstanzen zur Erzeugung von Mikro- und Nanodrähten haben organische Funktionsmaterialien aufgrund ihrer einfachen und kostengünstigen Verarbeitbarkeit sowie ihrer interessanten elektrischen und optischen Eigenschaften an Bedeutung gewonnen. Eine wichtige Materialklasse ist in diesem Zusammenhang die Verbindungsklasse der n-halbleitenden Perylentetracarbonsäurediimide (kurz Perylendiimide). Dem erfolgreichen Einsatz von eindimensionalen Strukturen als miniaturisierte Bausteine geht die optimierte und kontrollierte Herstellung voraus. Im Rahmen der Doktorarbeit wurde die neue Methode der Drahterzeugung „Trocknen unter Lösungsmittelatmosphäre“ entwickelt, welche auf Selbstassemblierung der Substanzmoleküle aus Lösung basiert und unter dem Einfluss von Lösungsmitteldampf direkt auf einem vorgegebenen Substrat stattfindet. Im Gegensatz zu literaturbekannten Methoden ist kein Transfer der Drähte aus einem Reaktionsgefäß nötig und damit verbundene Beschädigungen der Strukturen werden vermieden. Während herkömmliche Methoden in einer unkontrolliert großen Menge von ineinander verwundenen Drähten resultieren, erlaubt die substratbasierte Technik die Bildung voneinander separierter Einzelfasern und somit beispielsweise den Einsatz in Einzelstrukturbauteilen. Die erhaltenen Fasern sind morphologisch sehr gleichmäßig und weisen bei Längen von bis zu 5 mm bemerkenswert hohe Aspektverhältnisse von über 10000 auf. Darüber hinaus kann durch das direkte Drahtwachstum auf dem Substrat über den Einsatz von vorstrukturierten Oberflächen und Wachstumsmasken gerichtetes, lokal beschränktes Drahtwachstum erzielt werden und damit aktive Kontrolle auf Richtung und Wachstumsbereich der makroskopisch nicht handhabbaren Objekte ausgeübt werden. Um das Drahtwachstum auch hinsichtlich der Materialauswahl, d. h. der eingesetzten Ausgangsmaterialien zur Drahterzeugung und somit der resultierenden Eigenschaften der gebildeten Strukturen aktiv kontrollieren zu können, wird der Einfluss unterschiedlicher Parameter auf die Morphologie der Selbstassemblierungsprodukte am Beispiel unterschiedlicher Derivate betrachtet. So stellt sich zum einen die Art der eingesetzten Lösungsmittel in flüssiger und gasförmiger Phase beim Trocknen unter Lösungsmittelatmosphäre als wichtiger Faktor heraus. Beide Lösungsmittel dienen als Interaktionspartner für die Moleküle des funktionellen Drahtmaterials im Selbstassemblierungsprozess. Spezifische Wechselwirkungen zwischen Perylendiimid-Molekülen untereinander und mit Lösungsmittel-Molekülen bestimmen dabei die äußere Form der erhaltenen Strukturen. Ein weiterer wichtiger Faktor ist die Molekülstruktur des verwendeten funktionellen Perylendiimids. Es wird der Einfluss einer Bay-Substitution bzw. einer unsymmetrischen Imid-Substitution auf die Morphologie der erhaltenen Strukturen herausgestellt. Für das detaillierte Verständnis des Zusammenhanges zwischen Molekülstruktur und nötigen Wachstumsbedingungen für die Bildung von eindimensionalen Strukturen zum einen, aber auch die resultierenden Eigenschaften der erhaltenen Aggregationsprodukte zum anderen, sind Informationen über den molekularen Aufbau von großer Bedeutung. Im Rahmen der Doktorarbeit konnte ein molekular hoch geordneter, kristalliner Aufbau der Drähte nachgewiesen werden. Durch Kombination unterschiedlicher Messmethoden ist es gelungen, die molekulare Anordnung in Strukturen aus einem Spirobifluoren-substituierten Derivat in Form einer verkippten Molekülstapelung entlang der Drahtlängsrichtung zu bestimmen. Um mögliche Anwendungsbereiche der erzeugten Drähte aufzuzeigen, wurden diese hinsichtlich ihrer elektrischen und optischen Eigenschaften analysiert. Neben dem potentiellen Einsatz im Bereich von Filteranwendungen und Sensoren, sind vor allem die halbleitenden und optisch wellenleitenden Eigenschaften hervorzuheben. Es konnten organische Transistoren auf der Basis von Einzeldrähten mit im Vergleich zu Dünnschichtbauteilen erhöhten Ladungsträgerbeweglichkeiten präpariert werden. Darüber hinaus wurden die erzeugten eindimensionalen Strukturen als aktive optische Wellenleiter charakterisiert. Die im Rahmen der Dissertation erarbeiteten Kenntnisse bezüglich der Bildung von eindimensionalen Strukturen durch Selbstassemblierung, des Drahtaufbaus und erster anwendungsorientierter Charakterisierung stellen eine Basis zur Weiterentwicklung solcher miniaturisierter Bausteine für unterschiedlichste Anwendungen dar. Die neu entwickelte Methode des Trocknens unter Lösungsmittelatmosphäre ist nicht auf den Einsatz von Perylendiimiden beschränkt, sondern kann auf andere Substanzklassen ausgeweitet werden. Dies eröffnet breite Möglichkeiten der Materialauswahl und somit der Einsatzmöglichkeiten der erhaltenen Strukturen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work investigation of the QDs formation and the fabrication of QD based semiconductor lasers for telecom applications are presented. InAs QDs grown on AlGaInAs lattice matched to InP substrates are used to fabricate lasers operating at 1.55 µm, which is the central wavelength for far distance data transmission. This wavelength is used due to its minimum attenuation in standard glass fibers. The incorporation of QDs in this material system is more complicated in comparison to InAs QDs in the GaAs system. Due to smaller lattice mismatch the formation of circular QDs, elongated QDs and quantum wires is possible. The influence of the different growth conditions, such as the growth temperature, beam equivalent pressure, amount of deposited material on the formation of the QDs is investigated. It was already demonstrated that the formation process of QDs can be changed by the arsenic species. The formation of more round shaped QDs was observed during the growth of QDs with As2, while for As4 dash-like QDs. In this work only As2 was used for the QD growth. Different growth parameters were investigated to optimize the optical properties, like photoluminescence linewidth, and to implement those QD ensembles into laser structures as active medium. By the implementation of those QDs into laser structures a full width at half maximum (FWHM) of 30 meV was achieved. Another part of the research includes the investigation of the influence of the layer design of lasers on its lasing properties. QD lasers were demonstrated with a modal gain of more than 10 cm-1 per QD layer. Another achievement is the large signal modulation with a maximum data rate of 15 Gbit/s. The implementation of optimized QDs in the laser structure allows to increase the modal gain up to 12 cm-1 per QD layer. A reduction of the waveguide layer thickness leads to a shorter transport time of the carriers into the active region and as a result a data rate up to 22 Gbit/s was achieved, which is so far the highest digital modulation rate obtained with any 1.55 µm QD laser. The implementation of etch stop layers into the laser structure provide the possibility to fabricate feedback gratings with well defined geometries for the realization of DFB lasers. These DFB lasers were fabricated by using a combination of dry and wet etching. Single mode operation at 1.55 µm with a high side mode suppression ratio of 50 dB was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensing with electromagnetic waves having frequencies in the Terahertz-range is a very attractive investigative method with applications in fundamental research and industrial settings. Up to now, a lot of sources and detectors are available. However, most of these systems are bulky and have to be used in controllable environments such as laboratories. In 1993 Dyakonov and Shur suggested that plasma waves developing in field-effect-transistors can be used to emit and detect THz-radiation. Later on, it was shown that these plasma waves lead to rectification and allows for building efficient detectors. In contrast to the prediction that these plasma waves lead to new promising solid-state sources, only a few weak sources are known up to now. This work studies THz plasma waves in semiconductor devices using the Monte Carlo method in order to resolve this issue. A fast Monte Carlo solver was developed implementing a nonparabolic bandstructure representation of the used semiconductors. By investigating simplified field-effect-transistors it was found that the plasma frequency follows under equilibrium conditions the analytical predictions. However, no current oscillations were found at room temperature or with a current flowing in the channel. For more complex structures, consisting of ungated and gated regions, it was found that the plasma frequency does not follow the value predicted by the dispersion relation of the gated nor the ungated device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present an atomistic-continuum model for simulations of ultrafast laser-induced melting processes in semiconductors on the example of silicon. The kinetics of transient non-equilibrium phase transition mechanisms is addressed with MD method on the atomic level, whereas the laser light absorption, strong generated electron-phonon nonequilibrium, fast heat conduction, and photo-excited free carrier diffusion are accounted for with a continuum TTM-like model (called nTTM). First, we independently consider the applications of nTTM and MD for the description of silicon, and then construct the combined MD-nTTM model. Its development and thorough testing is followed by a comprehensive computational study of fast nonequilibrium processes induced in silicon by an ultrashort laser irradiation. The new model allowed to investigate the effect of laser-induced pressure and temperature of the lattice on the melting kinetics. Two competing melting mechanisms, heterogeneous and homogeneous, were identified in our big-scale simulations. Apart from the classical heterogeneous melting mechanism, the nucleation of the liquid phase homogeneously inside the material significantly contributes to the melting process. The simulations showed, that due to the open diamond structure of the crystal, the laser-generated internal compressive stresses reduce the crystal stability against the homogeneous melting. Consequently, the latter can take a massive character within several picoseconds upon the laser heating. Due to the large negative volume of melting of silicon, the material contracts upon the phase transition, relaxes the compressive stresses, and the subsequent melting proceeds heterogeneously until the excess of thermal energy is consumed. A series of simulations for a range of absorbed fluences allowed us to find the threshold fluence value at which homogeneous liquid nucleation starts contributing to the classical heterogeneous propagation of the solid-liquid interface. A series of simulations for a range of the material thicknesses showed that the sample width we chosen in our simulations (800 nm) corresponds to a thick sample. Additionally, in order to support the main conclusions, the results were verified for a different interatomic potential. Possible improvements of the model to account for nonthermal effects are discussed and certain restrictions on the suitable interatomic potentials are found. As a first step towards the inclusion of these effects into MD-nTTM, we performed nanometer-scale MD simulations with a new interatomic potential, designed to reproduce ab initio calculations at the laser-induced electronic temperature of 18946 K. The simulations demonstrated that, similarly to thermal melting, nonthermal phase transition occurs through nucleation. A series of simulations showed that higher (lower) initial pressure reinforces (hinders) the creation and the growth of nonthermal liquid nuclei. For the example of Si, the laser melting kinetics of semiconductors was found to be noticeably different from that of metals with a face-centered cubic crystal structure. The results of this study, therefore, have important implications for interpretation of experimental data on the kinetics of melting process of semiconductors.