3 resultados para YEAST SACCHAROMYCES-CEREVISIAE
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In eukaryotes, wobble uridines in the anticodons of tRNALysUUU, tRNAGluUUC and tRNAGlnUUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined loss of tRNA anticodon modifications (mcm5U and s2U) without a lethal effect. However, an elp3 disruption strain displays synthetic sick interaction and synergistic temperature sensitivity when combined with either uba4 or urm1 mutations, suggesting major translational defects in the absence of mcm5s2U modifications. Consistent with this notion, we find cellular protein levels drastically decreased in an elp3uba4 double mutant and show that this effect as well as growth phenotypes can be partially rescued by excess of tRNALysUUU. These results may indicate a global translational or protein homeostasis defect in cells simultaneously lacking mcm5 and s2 wobble uridine modification that could account for growth impairment and mainly originates from tRNALysUUU hypomodification and malfunction.
Resumo:
Das ursprünglich in S. cerevisiae identifizierte Urm1 stellt aufgrund seiner dualen Funktionsweise ein besonderes UBL dar. In einem Prozess, der als Urmylierung bezeichnet wird, kann es ähnlich dem Ubiquitin kovalent mit anderen Proteinen verknüpft werden. Zusätzlich fungiert es aber auch als Schwefelträger, der an der Thiolierung des wobble-Uridins bestimmter cytoplasmatischer tRNAs beteiligt ist. Während neuere Untersuchungen zeigen, dass die Urm1-abhängige tRNA-Thiolierung zu einer effizienten Translation in Eukaryoten beiträgt, ist die Bedeutung der Urmylierung immer noch unklar. Um die Funktion der Urm1-vermittelten Proteinmodifikation weiter aufzuklären, wurde die Urmylierung des Peroxiredoxins Ahp1 im Rahmen dieser Arbeit näher untersucht. Es konnte demonstriert werden, dass Ahp1 nicht nur als Monomer, sondern auch als Dimer urmyliert vorliegt. Dies deutet darauf hin, dass die Urmylierung mit dem peroxidatischen Zyklus von Ahp1 verknüpft ist. Diese Annahme konnte durch die Untersuchung der Modifikation verschiedener ahp1-Punktmutanten bestätigt werden. Hierbei ließ sich ebenfalls zeigen, dass das Peroxiredoxin wahrscheinlich auch an alternativen Lysinresten urmyliert werden kann. Trotzdem bleibt unklar, inwiefern die Funktionalität von Ahp1 durch die Urm1-Konjugation beeinträchtigt wird. So konnte ein Einfluss der Urmylierung auf die Ahp1-vermittelte Entgiftung des Alkylhydroperoxids t-BOOH nicht festgestellt werden. Ein weiterer Schwerpunkt dieser Arbeit war die Untersuchung einer möglichen mechanistischen Verknüpfung beider Urm1-Funktionen. Es ließ sich zeigen, dass nicht nur Schwefelmangel, sondern auch ein Verlust der Schwefeltransferase Tum1 zu einer drastischen Reduktion der Urm1-Konjugation führt. Demnach wird die Urmylierung wahrscheinlich über denselben Schwefeltransferweg vermittelt, der ebenfalls zur tRNA-Thiolierung beiträgt. Trotzdem ist der Schwefeltransfer, der zur Urm1-Aktivierung führt, womöglich komplexer als bisher angenommen. Wurden die vermuteten katalytischen Cysteine des Urm1-Aktivatorproteins Uba4 mutiert oder dessen C-terminale RHD entfernt, waren eine gehemmte Urmylierung und tRNA-Thiolierung weiterhin nachweisbar. Somit scheint ein Schwefeltransfer auf Urm1 auch ohne direkte Beteiligung von Uba4 möglich zu sein. In dieser Arbeit ließ sich außerdem zeigen, dass Urm1 in Hefe durch sein humanes Homolog funktional ersetzt werden kann. Dies ist ein Hinweis dafür, dass der Urm1-Weg in allen Eukaryoten gleich funktioniert und konserviert ist. Darüber hinaus scheint für die Urmylierung auch eine Konservierung der Substratspezifität gegeben zu sein. Der Nachweis einer Uba4-Urmylierung in Hefe könnte durchaus darauf hindeuten.
Resumo:
Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the Stransfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.