4 resultados para X-state
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
We report time-resolved experiments studying the dynamics of the Na_3 B-X system. Femtosecond pump-probe techniques combined with ion time-of-flight (TOF) and zero kinetic energy (ZEKE) photoelectron spectroscopy allow us to observe the three-dimensional wavepacket motion in the excited Na_3 B state and in the Na_3 X state. The ground state wavepacket is induced by stimulated emission pumping during the pump pulse. The X-state dynamics is dominated by the three vibrational modes of the Na_3. Furthermore we observed pseudorotational wavepacket motion in the B state. We do not observe a fragmentation of the B state within a time interval of 10 ps.
Resumo:
The doubly excited 2s2p ^1P_1 level of Kr^{34+} populated via resonant transfer and excitation (RTE) feeds selectively the metastable ls2s ^1 S_0 state which can only decay via simultaneous emission of two photons to the ground state 1s^2 ^1 S_0. X-ray/X-ray coincidence measurements in heavy ionatom collisions enable the direct measurement of the spectral distribution of the two-photon decay in He-like ions. In addition, we observe strong photon cascades indueed by radiative electron capture.
Resumo:
Self-consistent relativistic Dirac-Hartree-Fock calculations have been made of some lowlying electronic energies for the atoms of all elements in ground-state ds^2 electron configurations. The results indicate that, contrary to some previous estimates, the ground electronic state of atomic Lr could be in either the 5f^14 6d7s^2 or the 5f^14 7p 7s^2 electron configuration. The separation between the lowest energy level of the 5f^14 6d7s^2 configuration and the lowest energy level of the 5f^14 7p7s^2 configuration is estimated to be (0 ± 3) x 10^3 cm^-1 for atomic Lr.
Resumo:
Quasi-molecular X-rays observed in heavy ion collisions are interpreted within a relativistic calculation of correlation diagrams using the Dirac-Slater model. A semiquantitative description of noncharacteristic M X rays is given for the system Au-I.