6 resultados para Wetland mitigation
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.
Resumo:
Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.
Resumo:
Climate change remains a major challenge for today’s and future societies due to its immense impacts on human lives and the natural environment. This thesis investigates the extent to which individuals are willing and prepared to voluntarily contribute to climate protection and to adjust to new climatic conditions in order to cope with the consequences of climate change and reduce the severity of potential negative impacts. The thesis thereby combines research in the fields of the private provision of environmental public goods and adaptation to climate change, which is still widely unconnected in the existing literature. The six contributions of this thesis mainly focus on microeconometric analyses using data from international surveys in China, Germany, and the USA. The main findings are: (i) A substantial share of individuals is willing to voluntarily contribute to climate protection and to adapt to climatic change. The engagement in both strategies is positively interrelated at the individual level and the analyses reveal hardly any evidence that adaptation activities crowd out individuals’ incentives to engage in climate protection. (ii) The main determinants of individuals’ adaptation activities seem to be the subjective risk perception as well as socio-economic and socio-demographic characteristics like age, gender, education, and income, while their climate protection efforts are found to be broadly motivated by financial advantages from these activities and additional immaterial benefits. (iii) The empirical findings also suggest a significantly positive relationship between certain climate protection activities. Substitutions are found to occur merely if one measure is perceived to be more effective in providing climate protection or if individuals have high environmental preferences. (iv) This thesis further reveals a common understanding of a (normatively) fair burden-sharing in international climate policy across citizens in China, Germany, and the USA. The highest preferences are found for the accountability principle.
Resumo:
At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.
Resumo:
Artisanal columbite-tantalite (coltan) mining has had negative effects on the rural economy in the great Lakes region of Africa through labor deficits, degradation and loss of farmland, food insecurity, high cost of living, and reduced traditional export crop production alongside secondary impacts that remotely affect the quality of air, water, soil, plants, animals, and human wellbeing. The situation is multifaceted and calls for a holistic approach for short and long-term mitigation of such negative effects. This study focuses on the effects of mine land restoration on soil microbiological quality in the Gatumba Mining District of western Rwanda. Some coltan mine wastelands were afforested with pine and eucalyptus trees while farmers directly cultivated others due to land scarcity. Farmyard manure (FYM) is the sole fertilizer applied on the wastelands although it is insufficient to achieve the desired crop yields. Despite this, several multi-purpose plants such as Tithonia diversifolia, Markhamia lutea, and Canavalia brasiliensis thrive in the area and could supplement FYM. The potential for these “new” amendments to improve soil microbial properties, particularly in the tantalite mine soils was investigated. The specific objectives of the study were to: (a) evaluate the effects of land use on soil microbial indices of the tantalite mine soils; (b) investigate the restorative effects of organic amendments on a Technosol; and (c) estimate the short-term N and P supply potential of the soil amendments in the soils. Fresh soils (0-20 cm) from an unmined native forest, two mine sites afforested with pine and eucalyptus forests (pine and eucalyptus Technosols), an arable land, and two cultivated Technosols (Kavumu and Kirengo Technosols) were analyzed for the physicochemical properties. Afterwards, a 28-day incubation (22oC) experiment was conducted followed by measurements of mineral N, soil microbial biomass C, N, P, and fungal ergosterol contents using standard methods. This was followed by a 12-week incubation study of the arable soil and the Kavumu Technosol amended with FYM, Canavalia and Tithonia biomass, and Markhamia leaf litter after which soil microbial properties were measured at 2, 8, and 12 weeks of incubation. Finally, two 4-week incubation experiments each were conducted in soils of the six sites to estimate (i) potential mineralizable N using a soil-sand mixture (1:1) amended with Canavalia and goat manure and (ii) P mineralization mixtures (1:1) of soil and anion exchange resins in bicarbonate form amended with Tithonia biomass and goat manure. In study one, afforestation increased soil organic carbon and total N contents in the pine and eucalyptus Technosols by 34-40% and 28-30%, respectively of that in the native forest soil. Consequently, the microbial biomass and activity followed a similar trend where the cultivated Technosols were inferior to the afforested ones. The microbial indices of the mine soils were constrained by soil acidity, dithionite-extractable Al, and low P availability. In study two, the amendments substantially increased C and N mineralization, microbial properties compared with non-amended soils. Canavalia biomass increased CO2 efflux by 340%, net N mineralization by 30-140%, and microbial biomass C and N by 240-600% and 240-380% (P < 0.01), respectively after four weeks of incubation compared with the non-amended soils. Tithonia biomass increased ergosterol content by roughly 240%. The Kavumu Technosol showed a high potential for quick restoration of its soil quality due to its major responses to the measured biological parameters. In study three, Canavalia biomass gave the highest mineralizable N (130 µg g-1 soil, P < 0.01) in the Kavumu Technosol and the lowest in the native forest soil (-20 µg g-1 soil). Conversely, the mineralizable N of goat manure was negative in all soils ranging from -2.5 µg N g-1 to -7.7 µg N g-1 soil except the native forest soil. However, the immobilization of goat manure N in the “cultivated soils” was 30-70% lower than in the “forest soils” signifying an imminent recovery of the amended soils from N immobilization. The mineralization of goat manure P was three-fold that of Tithonia, constituting 61-71% of total P applied. Phosphorus mineralization slightly decreased after four weeks of incubation due to sulfate competition as reflected in a negative correlation, which was steeper in the Tithonia treatment. In conclusion, each amendment used in this research played a unique role in C, N, and P mineralization and contributed substantially to microbial properties in the tantalite mine soils. Interestingly, the “N immobilizers” exhibited potentials for P release and soil organic carbon storage. Consequently, the combined use of the amendments in specific ratios, or co-composting prior to application is recommended to optimize nutrient release, microbial biomass dynamics and soil organic matter accrual. Transport of organic inputs seems more feasible for smallholder farmers who typically manage small field sizes. To reduce acidity in the soils, liming with wood ash was recommended to also improve P availability and enhance soil biological quality, even if it may only be possible on small areas. Further, afforestation with mixed-species of fast-growing eucalyptus and legume or indigenous tree species are suggested to restore tantalite mine wastelands. It is emphasized most of this research was conducted under controlled laboratory conditions, which exclude interaction with environmental variables. Also fine fractions of the amendments were used compared with the usual practice of applying a mixture of predominantly coarser fractions. Therefore, the biological dynamics reported in the studies here may not entirely reflect those of farmers’ field conditions.