3 resultados para WEB systems
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
This report gives a detailed discussion on the system, algorithms, and techniques that we have applied in order to solve the Web Service Challenges (WSC) of the years 2006 and 2007. These international contests are focused on semantic web service composition. In each challenge of the contests, a repository of web services is given. The input and output parameters of the services in the repository are annotated with semantic concepts. A query to a semantic composition engine contains a set of available input concepts and a set of wanted output concepts. In order to employ an offered service for a requested role, the concepts of the input parameters of the offered operations must be more general than requested (contravariance). In contrast, the concepts of the output parameters of the offered service must be more specific than requested (covariance). The engine should respond to a query by providing a valid composition as fast as possible. We discuss three different methods for web service composition: an uninformed search in form of an IDDFS algorithm, a greedy informed search based on heuristic functions, and a multi-objective genetic algorithm.
Resumo:
The ongoing growth of the World Wide Web, catalyzed by the increasing possibility of ubiquitous access via a variety of devices, continues to strengthen its role as our prevalent information and commmunication medium. However, although tools like search engines facilitate retrieval, the task of finally making sense of Web content is still often left to human interpretation. The vision of supporting both humans and machines in such knowledge-based activities led to the development of different systems which allow to structure Web resources by metadata annotations. Interestingly, two major approaches which gained a considerable amount of attention are addressing the problem from nearly opposite directions: On the one hand, the idea of the Semantic Web suggests to formalize the knowledge within a particular domain by means of the "top-down" approach of defining ontologies. On the other hand, Social Annotation Systems as part of the so-called Web 2.0 movement implement a "bottom-up" style of categorization using arbitrary keywords. Experience as well as research in the characteristics of both systems has shown that their strengths and weaknesses seem to be inverse: While Social Annotation suffers from problems like, e. g., ambiguity or lack or precision, ontologies were especially designed to eliminate those. On the contrary, the latter suffer from a knowledge acquisition bottleneck, which is successfully overcome by the large user populations of Social Annotation Systems. Instead of being regarded as competing paradigms, the obvious potential synergies from a combination of both motivated approaches to "bridge the gap" between them. These were fostered by the evidence of emergent semantics, i. e., the self-organized evolution of implicit conceptual structures, within Social Annotation data. While several techniques to exploit the emergent patterns were proposed, a systematic analysis - especially regarding paradigms from the field of ontology learning - is still largely missing. This also includes a deeper understanding of the circumstances which affect the evolution processes. This work aims to address this gap by providing an in-depth study of methods and influencing factors to capture emergent semantics from Social Annotation Systems. We focus hereby on the acquisition of lexical semantics from the underlying networks of keywords, users and resources. Structured along different ontology learning tasks, we use a methodology of semantic grounding to characterize and evaluate the semantic relations captured by different methods. In all cases, our studies are based on datasets from several Social Annotation Systems. Specifically, we first analyze semantic relatedness among keywords, and identify measures which detect different notions of relatedness. These constitute the input of concept learning algorithms, which focus then on the discovery of synonymous and ambiguous keywords. Hereby, we assess the usefulness of various clustering techniques. As a prerequisite to induce hierarchical relationships, our next step is to study measures which quantify the level of generality of a particular keyword. We find that comparatively simple measures can approximate the generality information encoded in reference taxonomies. These insights are used to inform the final task, namely the creation of concept hierarchies. For this purpose, generality-based algorithms exhibit advantages compared to clustering approaches. In order to complement the identification of suitable methods to capture semantic structures, we analyze as a next step several factors which influence their emergence. Empirical evidence is provided that the amount of available data plays a crucial role for determining keyword meanings. From a different perspective, we examine pragmatic aspects by considering different annotation patterns among users. Based on a broad distinction between "categorizers" and "describers", we find that the latter produce more accurate results. This suggests a causal link between pragmatic and semantic aspects of keyword annotation. As a special kind of usage pattern, we then have a look at system abuse and spam. While observing a mixed picture, we suggest that an individual decision should be taken instead of disregarding spammers as a matter of principle. Finally, we discuss a set of applications which operationalize the results of our studies for enhancing both Social Annotation and semantic systems. These comprise on the one hand tools which foster the emergence of semantics, and on the one hand applications which exploit the socially induced relations to improve, e. g., searching, browsing, or user profiling facilities. In summary, the contributions of this work highlight viable methods and crucial aspects for designing enhanced knowledge-based services of a Social Semantic Web.
Resumo:
Web services from different partners can be combined to applications that realize a more complex business goal. Such applications built as Web service compositions define how interactions between Web services take place in order to implement the business logic. Web service compositions not only have to provide the desired functionality but also have to comply with certain Quality of Service (QoS) levels. Maximizing the users' satisfaction, also reflected as Quality of Experience (QoE), is a primary goal to be achieved in a Service-Oriented Architecture (SOA). Unfortunately, in a dynamic environment like SOA unforeseen situations might appear like services not being available or not responding in the desired time frame. In such situations, appropriate actions need to be triggered in order to avoid the violation of QoS and QoE constraints. In this thesis, proper solutions are developed to manage Web services and Web service compositions with regard to QoS and QoE requirements. The Business Process Rules Language (BPRules) was developed to manage Web service compositions when undesired QoS or QoE values are detected. BPRules provides a rich set of management actions that may be triggered for controlling the service composition and for improving its quality behavior. Regarding the quality properties, BPRules allows to distinguish between the QoS values as they are promised by the service providers, QoE values that were assigned by end-users, the monitored QoS as measured by our BPR framework, and the predicted QoS and QoE values. BPRules facilitates the specification of certain user groups characterized by different context properties and allows triggering a personalized, context-aware service selection tailored for the specified user groups. In a service market where a multitude of services with the same functionality and different quality values are available, the right services need to be selected for realizing the service composition. We developed new and efficient heuristic algorithms that are applied to choose high quality services for the composition. BPRules offers the possibility to integrate multiple service selection algorithms. The selection algorithms are applicable also for non-linear objective functions and constraints. The BPR framework includes new approaches for context-aware service selection and quality property predictions. We consider the location information of users and services as context dimension for the prediction of response time and throughput. The BPR framework combines all new features and contributions to a comprehensive management solution. Furthermore, it facilitates flexible monitoring of QoS properties without having to modify the description of the service composition. We show how the different modules of the BPR framework work together in order to execute the management rules. We evaluate how our selection algorithms outperform a genetic algorithm from related research. The evaluation reveals how context data can be used for a personalized prediction of response time and throughput.