7 resultados para Volume plasmático
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
In [4], Guillard and Viozat propose a finite volume method for the simulation of inviscid steady as well as unsteady flows at low Mach numbers, based on a preconditioning technique. The scheme satisfies the results of a single scale asymptotic analysis in a discrete sense and comprises the advantage that this can be derived by a slight modification of the dissipation term within the numerical flux function. Unfortunately, it can be observed by numerical experiments that the preconditioned approach combined with an explicit time integration scheme turns out to be unstable if the time step Dt does not satisfy the requirement to be O(M2) as the Mach number M tends to zero, whereas the corresponding standard method remains stable up to Dt=O(M), M to 0, which results from the well-known CFL-condition. We present a comprehensive mathematical substantiation of this numerical phenomenon by means of a von Neumann stability analysis, which reveals that in contrast to the standard approach, the dissipation matrix of the preconditioned numerical flux function possesses an eigenvalue growing like M-2 as M tends to zero, thus causing the diminishment of the stability region of the explicit scheme. Thereby, we present statements for both the standard preconditioner used by Guillard and Viozat [4] and the more general one due to Turkel [21]. The theoretical results are after wards confirmed by numerical experiments.
Resumo:
This article is concerned with the numerical simulation of flows at low Mach numbers which are subject to the gravitational force and strong heat sources. As a specific example for such flows, a fire event in a car tunnel will be considered in detail. The low Mach flow is treated with a preconditioning technique allowing the computation of unsteady flows, while the source terms for gravitation and heat are incorporated via operator splitting. It is shown that a first order discretization in space is not able to compute the buoyancy forces properly on reasonable grids. The feasibility of the method is demonstrated on several test cases.
Resumo:
Relativistic multi-configuration Dirac Fock (MCDF) wavefunctions coupled to good angular momentum J have been calculated for low lying states of Ba I and Ba II. These wavefunctions are compared with semiempirical ones derived from experimental atomic energy levels. It is found that significantly better agreement is obtained when close configurations are included in the MCDF wavefunctions. Calculations of the electronic part of the field isotope shift lead to very good agreement with electronic factors derived from experimental data. Furthermore, the slopes of the lines in a King plot analysis of many of the optical lines are predicted accurately by these calculations. However, the MCDF wavefunctions seem not to be of sufficient accuracy to give agreement with the experimental magnetic dipole and electric quadrupole hyperfine structure constants.
Resumo:
Electronic factors in the volume isotope shift have been calculated in an ab initio way with the relativistic Dirac-Fock method for a number of different optical single/and two-photon transitions in Au I. The agreement with a semi-empirical method is within 10% for the resonance transition. For this one and a few other transitions the effect of core excitation has been analyzed with the Multi-configuration Dirac-Fock method as well, and it was found to reduce the electronic factor in the order of 5 %.
Resumo:
Results of relativistic multiconfiguration Dirac-Fock calculations with an extended nucleus are used to analyze the volume isotope shifts of the resonance transitions in the group-IIa and -IIb elements as well as in Yb. This is done together with a review of the isotope shift theory, including a critical evaluation and comparison of the semiempirical calculation of volume isotope shifts commonly used today. Electronic factors F_i, proportional to differences of electronic densities over the nuclear volume, are discussed within various approximations and compared with experimental results.
Resumo:
Relativistic multi-configuration Dirac-Fock wavefunctions, coupled to good angular momentum J, have been calculated for low lying states of Ba I and Ba II. The resulting electronic factors show good agreement with data derived from recent high-resolution laser spectroscopy experiments and results from a comparison of muonic and optical data.
Resumo:
Inhalt dieser Arbeit ist ein Verfahren zur numerischen Lösung der zweidimensionalen Flachwassergleichung, welche das Fließverhalten von Gewässern, deren Oberflächenausdehnung wesentlich größer als deren Tiefe ist, modelliert. Diese Gleichung beschreibt die gravitationsbedingte zeitliche Änderung eines gegebenen Anfangszustandes bei Gewässern mit freier Oberfläche. Diese Klasse beinhaltet Probleme wie das Verhalten von Wellen an flachen Stränden oder die Bewegung einer Flutwelle in einem Fluss. Diese Beispiele zeigen deutlich die Notwendigkeit, den Einfluss von Topographie sowie die Behandlung von Nass/Trockenübergängen im Verfahren zu berücksichtigen. In der vorliegenden Dissertation wird ein, in Gebieten mit hinreichender Wasserhöhe, hochgenaues Finite-Volumen-Verfahren zur numerischen Bestimmung des zeitlichen Verlaufs der Lösung der zweidimensionalen Flachwassergleichung aus gegebenen Anfangs- und Randbedingungen auf einem unstrukturierten Gitter vorgestellt, welches in der Lage ist, den Einfluss topographischer Quellterme auf die Strömung zu berücksichtigen, sowie in sogenannten \glqq lake at rest\grqq-stationären Zuständen diesen Einfluss mit den numerischen Flüssen exakt auszubalancieren. Basis des Verfahrens ist ein Finite-Volumen-Ansatz erster Ordnung, welcher durch eine WENO Rekonstruktion unter Verwendung der Methode der kleinsten Quadrate und eine sogenannte Space Time Expansion erweitert wird mit dem Ziel, ein Verfahren beliebig hoher Ordnung zu erhalten. Die im Verfahren auftretenden Riemannprobleme werden mit dem Riemannlöser von Chinnayya, LeRoux und Seguin von 1999 gelöst, welcher die Einflüsse der Topographie auf den Strömungsverlauf mit berücksichtigt. Es wird in der Arbeit bewiesen, dass die Koeffizienten der durch das WENO-Verfahren berechneten Rekonstruktionspolynome die räumlichen Ableitungen der zu rekonstruierenden Funktion mit einem zur Verfahrensordnung passenden Genauigkeitsgrad approximieren. Ebenso wird bewiesen, dass die Koeffizienten des aus der Space Time Expansion resultierenden Polynoms die räumlichen und zeitlichen Ableitungen der Lösung des Anfangswertproblems approximieren. Darüber hinaus wird die wohlbalanciertheit des Verfahrens für beliebig hohe numerische Ordnung bewiesen. Für die Behandlung von Nass/Trockenübergangen wird eine Methode zur Ordnungsreduktion abhängig von Wasserhöhe und Zellgröße vorgeschlagen. Dies ist notwendig, um in der Rechnung negative Werte für die Wasserhöhe, welche als Folge von Oszillationen des Raum-Zeit-Polynoms auftreten können, zu vermeiden. Numerische Ergebnisse die die theoretische Verfahrensordnung bestätigen werden ebenso präsentiert wie Beispiele, welche die hervorragenden Eigenschaften des Gesamtverfahrens in der Berechnung herausfordernder Probleme demonstrieren.