5 resultados para Variational approximation

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ground state (J = 0) electronic correlation energy of the 4-electron Be-sequence is calculated in the Multi-Configuration Dirac-Fock approximation for Z = 4-20. The 4 electrons were distributed over the configurations arising from the 1s, 2s, 2p, 3s, 3p and 3d orbitals. Theoretical values obtained here are in good agreement with experimental correlation energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit betrachten wir die Strömung einer zähen, inkompressiblen, instationären Flüssigkeit in einem dreidimensionalen beschränkten Gebiet, deren Verhalten wird mit den instationären Gleichungen von Navier-Stokes beschrieben. Diese Gleichungen gelten für viele wichtige Strömungsprobleme, beispielsweise für Luftströmungen weit unterhalb der Schallgeschwindigkeit, für Wasserströmungen, sowie für flüssige Metalle. Im zweidimensionalen Fall konnten für die Navier-Stokes-Gleichungen bereits weitreichende Existenz-, Eindeutigkeits- und Regularitätsaussagen bewiesen werden. Im allgemeinen dreidimensionalen Fall, falls also die Daten keinen Kleinheitsannahmen unterliegen, hat man bisher lediglich Existenz und Eindeutigkeit zeitlich lokaler starker Lösungen nachgewiesen. Außerdem existieren zeitlich global so genannte schwache Lösungen, deren Regularität für den Nachweis der Eindeutigkeit im dreidimensionalen Fall allerdings nicht ausreicht. Somit bleibt die Lücke zwischen der zeitlich lokalen, eindeutigen starken Lösung und den zeitlich globalen, nicht eindeutigen schwachen Lösungen der Navier-Stokes-Gleichungen im dreidimensionalen Fall weiterhin offen. Das renommierte Clay Mathematics Institute hat dieses Problem zu einem von sieben Millenniumsproblemen erklärt und für seine Lösung eine Million US-Dollar ausgelobt. In der vorliegenden Arbeit wird ein neues Approximationsverfahren für die Navier-Stokes-Gleichungen entwickelt, das auf einer Kopplung der Eulerschen und Lagrangeschen Beschreibung zäher Strömungen beruht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-resonant light interacting with diatomics via the polarizability anisotropy couples different rotational states and may lead to strong hybridization of the motion. The modification of shape resonances and low-energy scattering states due to this interaction can be fully captured by an asymptotic model, based on the long-range properties of the scattering (Crubellier et al 2015 New J. Phys. 17 045020). Remarkably, the properties of the field-dressed shape resonances in this asymptotic multi-channel description are found to be approximately linear in the field intensity up to fairly large intensity. This suggests a perturbative single-channel approach to be sufficient to study the control of such resonances by the non-resonant field. The multi-channel results furthermore indicate the dependence on field intensity to present, at least approximately, universal characteristics. Here we combine the nodal line technique to solve the asymptotic Schrödinger equation with perturbation theory. Comparing our single channel results to those obtained with the full interaction potential, we find nodal lines depending only on the field-free scattering length of the diatom to yield an approximate but universal description of the field-dressed molecule, confirming universal behavior.