3 resultados para VAT revenues

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban and peri-urban agriculture (UPA) increasingly supplies food and non-food values to the rapidly growing West African cities. However, little is known about the resource use efficiencies in West African small-scale UPA crop and livestock production systems, and about the benefits that urban producers and retailers obtain from the cultivation and sale of UPA products. To contribute to filling this gap of knowledge, the studies comprising this doctoral thesis determined nutrient use efficiencies in representative urban crop and livestock production system in Niamey, Niger, and investigated potential health risks for consumers. Also assessed was the economic efficiency of urban farming activities. The field study, which was conducted during November 2005 to January 2008, quantified management-related horizontal nutrient flows in 10 vegetable gardens, 9 millet fields and 13 cattle and small ruminant production units. These farms, selected on the basis of a preceding study, represented the diversity of UPA crop and livestock production systems in Niamey. Based on the management intensity, the market orientation and especially the nutrient input to individual gardens and fields, these were categorized as high or low input systems. In the livestock study, high and low input cattle and small ruminant units were differentiated based on the amounts of total feed dry matter offered daily to the animals at the homestead. Additionally, economic returns to gardeners and market retailers cultivating and selling amaranth, lettuce, cabbage and tomato - four highly appreciated vegetables in Niamey were determined during a 6-months survey in forty gardens and five markets. For vegetable gardens and millet fields, significant differences in partial horizontal nutrient balances were determined for both management intensities. Per hectare, average annual partial balances for carbon (C), nitrogen (N), phosphorus (P) and potassium (K) amounted to 9936 kg C, 1133 kg N, 223 kg P and 312 kg K in high input vegetable gardens as opposed to 9580 kg C, 290 kg N, 125 kg P and 351 kg K in low input gardens. These surpluses were mainly explained by heavy use of mineral fertilizers and animal manure to which irrigation with nutrient rich wastewater added. In high input millet fields, annual surpluses of 259 kg C ha-1, 126 kg N ha-1, 20 kg P ha-1 and 0.4 kg K ha-1 were determined. Surpluses of 12 kg C ha-1, 17 kg N ha-1, and deficits of -3 kg P ha-1 and -3 kg K ha-1 were determined for low input millet fields. Here, carbon and nutrient inputs predominantly originated from livestock manure application through corralling of sheep, goats and cattle. In the livestock enterprises, N, P and K supplied by forages offered at the farm exceeded the animals’ requirements for maintenance and growth in high and low input sheep/goat as well as cattle units. The highest average growth rate determined in high input sheep/goat units was 104 g d-1 during the cool dry season, while a maximum average gain of 70 g d-1 was determined for low input sheep/goat units during the hot dry season. In low as well as in high input cattle units, animals lost weight during the hot dry season, and gained weight during the cool dry season. In all livestock units, conversion efficiencies for feeds offered at the homestead were rather poor, ranging from 13 to 42 kg dry matter (DM) per kg live weight gain (LWG) in cattle and from 16 to 43 kg DM kg-1 LWG in sheep/goats, pointing to a substantial waste of feeds and nutrients. The economic assessment of the production of four high value vegetables pointed to a low efficiency of N and P use in amaranth and lettuce production, causing low economic returns for these crops compared to tomato and cabbage to which inexpensive animal manure was applied. The net profit of market retailers depended on the type of vegetable marketed. In addition it depended on marketplace for amaranth and lettuce, and on season and marketplace for cabbage and tomato. Analysis of faecal pathogens in lettuce irrigated with river water and fertilized with animal manure indicated a substantial contamination by Salmonella spp. with 7.2 x 104 colony forming units (CFU) per 25 g of produce fresh matter, while counts of Escherichia coli averaged 3.9 x 104 CFU g-1. In lettuce irrigated with wastewater, Salmonella counts averaged 9.8 x 104 CFU 25 g-1 and E. coli counts were 0.6 x 104 CFU g-1; these values exceeded the tolerable contamination levels in vegetables of 10 CFU g-1 for E. coli and of 0 CFU 25 g-1 for Salmonella. Taken together, the results of this study indicate that Niamey’s UPA enterprises put environmental safety at risk since excess inputs of N, P and K to crop and livestock production units favour N volatilisation and groundwater pollution by nutrient leaching. However, more detailed studies are needed to corroborate these indications. Farmers’ revenues could be significantly increased if nutrient use efficiency in the different production (sub)systems was improved by better matching nutrient supply through fertilizers and feeds with the actual nutrient demands of plants and animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like elsewhere also in Kabul, Afghanistan urban and peri-urban agriculture (UPA) has often been accused of being resource inefficient and unsustainable causing negatives externalities to community health and to the surroundings. These arise from the inappropriate management and use of agricultural inputs, including often pesticides and inter-city wastes containing heavy metal residues and pathogens. To address these concerns, parallel studies with the aims of quantification of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) horizontal and vertical fluxes; the assessment of heavy metal and pathogen contaminations of UPA produce, and an economic analysis of cereal, vegetable and grape production systems conducted for two years in UPA of Kabul from April 2008 to October 2009. The results of the studies from these three UPA diverse production systems can be abridged as follows: Biennial net balances in vegetable production systems were positive for N (80 kg ha-1 ), P (75 kg ha-1) and C (3,927 kg ha-1), negative for K (-205 kg ha-1), whereas in cereal production systems biennial horizontal balances were positive for P (20 kg ha-1 ) and C (4,900 kg ha-1) negative for N (-155 kg ha-1) and K (-355 kg ha-1) and in vineyards corresponding values were highly positive for N (295 kg ha-1), P (235 kg ha-1), C (3,362 kg ha-1) and slightly positive for K (5 kg ha-1). Regardless of N and C gaseous emissions, yearly leaching losses of N and P in selected vegetable gardens varied from 70 - 205 kg N ha-1 and 5 - 10 kg P ha-1. Manure and irrigation water contributed on average 12 - 79% to total Inputs of N, P, K and C, 10 - 53% to total inputs of C in the gardens and fields. The elevated levels of heavy metal and pathogen loads on fresh UPA vegetables reflected contamination from increasing traffic in the city, deposits of the past decades of war, lacking collection and treatment of raw inter-city wastes which call for solutions to protect consumer and producer health and increase reliability of UPA productions. A cost-revenue analysis of all inputs and outputs of cereal, vegetable and grapes production systems over two years showed substantial differences in net UPA household income. To confirm these results, more detailed studies are needed, but tailoring and managing the optimal application of inputs to crop needs will significantly enhance farmer’s better revenues as will as environmental and produce quality.