3 resultados para Two-year bioassay
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
The objective of this study was to determine the optimum row spacing to improve the productivity of two soybean (Glycine max L.) varieties under the tropical hot sub-moist agroecological conditions of Ethiopia. A two-year split-plot design experiment was conducted to determine the effect of variety (Awasa-95 [early-maturing], Afgat [medium-maturing]) and row spacing (RS: 20, 25, 30, 35, 40, 45, 50, 55, 60 cm) on the productivity, nodulation and weed infestation of soybean. Seed and total dry matter (TDM) yield per ha and per plant, and weed dry biomass per m^2 were significantly affected by RS. Soybean variety had a significant effect on plant density at harvest and some yield components (plant height, number of seeds/pod, and 1000 seed weight). Generally, seed and TDM yield per ha and per plant were high at 40 cm RS, and weed dry biomass per m^2 was higher for RS >= 40 cm than for narrower RS. However, the results did not demonstrate a consistent pattern along the RS gradient. The medium-maturing variety Afgat experienced higher mortality and ended up with lower final plant density at harvest, but higher plant height, number of seeds per pod and 1000 seed weight than the early-maturing variety Awasa-95. The results indicate that 40 cm RS with 5 cm plant spacing within a row can be used for high productivity and low weed infestation of both soybean varieties in the hot sub-moist tropical environment of south-western Ethiopia.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Agriculture in semi-arid and arid regions is constantly gaining importance for the security of the nutrition of humankind because of the rapid population growth. At the same time, especially these regions are more and more endangered by soil degradation, limited resources and extreme climatic conditions. One way to retain soil fertility under these conditions in the long run is to increase the soil organic matter. Thus, a two-year field experiment was conducted to test the efficiency of activated charcoal and quebracho tannin extract as stabilizers of soil organic matter on a sandy soil low in nutrients in Northern Oman. Both activated charcoal and quebracho tannin extract were either fed to goats and after defecation applied to the soil or directly applied to the soil in combination with dried goat manure. Regardless of the application method, both additives reduced decomposition of soil-applied organic matter and thus stabilized and increased soil organic carbon. The nutrient release from goat manure was altered by the application of activated charcoal and quebracho tannin extract as well, however, nutrient release was not always slowed down. While activated charcoal fed to goats, was more effective in stabilising soil organic matter and in reducing nutrient release than mixing it, for quebracho tannin extract the opposite was the case. Moreover, the efficiency of the additives was influenced by the cultivated crop (sweet corn and radish), leading to unexplained interactions. The reduced nutrient release caused by the stabilization of the organic matter might be the reason for the reduced yields for sweet corn caused by the application of manure amended with activated charcoal and quebracho tannin extract. Radish, on the other hand, was only inhibited by the presence of quebracho tannin extract but not by activated charcoal. This might be caused by a possible allelopathic effect of tannins on crops. To understand the mechanisms behind the changes in manure, in the soil, in the mineralisation and the plant development and to resolve detrimental effects, further research as recommended in this dissertation is necessary. Particularly in developing countries poor in resources and capital, feeding charcoal or tannins to animals and using their faeces as manure may be promising to increase soil fertility, sequester carbon and reduce nutrient losses, when yield reductions can be resolved.