5 resultados para Tripartite entanglement
em Universitätsbibliothek Kassel, Universität Kassel, Germany
Resumo:
During recent years, quantum information processing and the study of N−qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing efficient quantum information protocols, such as quantum key distribution, teleportation or quantum computation, however, these investigations also revealed a great deal of difficulties which still need to be resolved in practise. Quantum information protocols rely on the application of unitary and non–unitary quantum operations that act on a given set of quantum mechanical two-state systems (qubits) to form (entangled) states, in which the information is encoded. The overall system of qubits is often referred to as a quantum register. Today the entanglement in a quantum register is known as the key resource for many protocols of quantum computation and quantum information theory. However, despite the successful demonstration of several protocols, such as teleportation or quantum key distribution, there are still many open questions of how entanglement affects the efficiency of quantum algorithms or how it can be protected against noisy environments. To facilitate the simulation of such N−qubit quantum systems and the analysis of their entanglement properties, we have developed the Feynman program. The program package provides all necessary tools in order to define and to deal with quantum registers, quantum gates and quantum operations. Using an interactive and easily extendible design within the framework of the computer algebra system Maple, the Feynman program is a powerful toolbox not only for teaching the basic and more advanced concepts of quantum information but also for studying their physical realization in the future. To this end, the Feynman program implements a selection of algebraic separability criteria for bipartite and multipartite mixed states as well as the most frequently used entanglement measures from the literature. Additionally, the program supports the work with quantum operations and their associated (Jamiolkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. As an application of the developed tools we further present two case studies in which the entanglement of two atomic processes is investigated. In particular, we have studied the change of the electron-ion spin entanglement in atomic photoionization and the photon-photon polarization entanglement in the two-photon decay of hydrogen. The results show that both processes are, in principle, suitable for the creation and control of entanglement. Apart from process-specific parameters like initial atom polarization, it is mainly the process geometry which offers a simple and effective instrument to adjust the final state entanglement. Finally, for the case of the two-photon decay of hydrogenlike systems, we study the difference between nonlocal quantum correlations, as given by the violation of the Bell inequality and the concurrence as a true entanglement measure.
Resumo:
Supervision ist Beratung beruflichen Handelns. Zentrales Anliegen der Dissertation ist die Entwicklung der Arbeitswelt in der Moderne sowie die aktuellen Veränderungen näher zu beleuchten, um ihre Bedeutung für die Supervision zu eruieren. Vorab werden die Geschichte und Weiterentwicklung der Supervision mit ihren Spannungsfeldern skizziert. Der Hauptteil handelt von der Herausbildung und Durchsetzung der kapitalistischen Produktionsweise. Es wird dargelegt, was für ein vielschichtiger Prozess für den einzelnen und die Gesellschaft in Gang gesetzt wurde, um die moderne Wirtschaftsweise zu installieren und welche Unterstützung aus anderen Bereichen -Religion, Politik etc. - dazu von Nöten war. Darüber hinaus wird aufgezeigt, welche Konflikte von Anfang an vorhanden waren. Das Hauptaugenmerk richtet sich auf die Prämissen der modernen Arbeitswelt und die mögliche Inkompatibilität ihrer Anliegen: Gewinn und Gerechtigkeit, Konkurrenz und Kooperation, freier Markt und staatliche Regulation, Gleichheit und Spezialisierung, Individualität und Kollektivität. Konflikte und Verstrickungen, die sich daraus für den arbeitenden Menschen ergeben und somit Thema für die Supervision wurden, werden herausgearbeitet. In bezug auf Supervision wird dargestellt, welche Problematik der Wirtschaftsweise immanent ist und schwerlich durch Beratung aufgelöst werden kann. Eine bedeutsame Stellung nimmt die Arbeit als eine zentrale Kategorie der Ökonomie ein. Die Verflechtung von Arbeit und Ökonomie sowie der Entwicklungsverlauf von Arbeit werden skizziert: vom Fordismus zur Globalisierung. Beschrieben und erörtert werden die Konsequenzen für die aktuellen Arbeitsformen und -bedingungen durch die Produktivkraftentwicklung und die neuen Produktionskonzepte. Arbeit wird kritisch in ihrer Funktion für die kapitalistische Produktionsweise reflektiert, mit ihren Beeinträchtigungen für den tätigen Menschen. Das ambivalente Verhältnis von Mensch und Ökonomie wird als das signifikanteste Spannungsfeld für die Supervision betrachtet, verbunden mit der Herausforderung, Supervision nicht zu einer Beratungstechnologie zur Anpassung und Funktionalisierung des Menschen an die sich immer rascher verändernde Arbeitswelt zu zuschneiden.
Resumo:
We show that optimizing a quantum gate for an open quantum system requires the time evolution of only three states irrespective of the dimension of Hilbert space. This represents a significant reduction in computational resources compared to the complete basis of Liouville space that is commonly believed necessary for this task. The reduction is based on two observations: the target is not a general dynamical map but a unitary operation; and the time evolution of two properly chosen states is sufficient to distinguish any two unitaries. We illustrate gate optimization employing a reduced set of states for a controlled phasegate with trapped atoms as qubit carriers and a iSWAP gate with superconducting qubits.
Resumo:
We are currently at the cusp of a revolution in quantum technology that relies not just on the passive use of quantum effects, but on their active control. At the forefront of this revolution is the implementation of a quantum computer. Encoding information in quantum states as “qubits” allows to use entanglement and quantum superposition to perform calculations that are infeasible on classical computers. The fundamental challenge in the realization of quantum computers is to avoid decoherence – the loss of quantum properties – due to unwanted interaction with the environment. This thesis addresses the problem of implementing entangling two-qubit quantum gates that are robust with respect to both decoherence and classical noise. It covers three aspects: the use of efficient numerical tools for the simulation and optimal control of open and closed quantum systems, the role of advanced optimization functionals in facilitating robustness, and the application of these techniques to two of the leading implementations of quantum computation, trapped atoms and superconducting circuits. After a review of the theoretical and numerical foundations, the central part of the thesis starts with the idea of using ensemble optimization to achieve robustness with respect to both classical fluctuations in the system parameters, and decoherence. For the example of a controlled phasegate implemented with trapped Rydberg atoms, this approach is demonstrated to yield a gate that is at least one order of magnitude more robust than the best known analytic scheme. Moreover this robustness is maintained even for gate durations significantly shorter than those obtained in the analytic scheme. Superconducting circuits are a particularly promising architecture for the implementation of a quantum computer. Their flexibility is demonstrated by performing optimizations for both diagonal and non-diagonal quantum gates. In order to achieve robustness with respect to decoherence, it is essential to implement quantum gates in the shortest possible amount of time. This may be facilitated by using an optimization functional that targets an arbitrary perfect entangler, based on a geometric theory of two-qubit gates. For the example of superconducting qubits, it is shown that this approach leads to significantly shorter gate durations, higher fidelities, and faster convergence than the optimization towards specific two-qubit gates. Performing optimization in Liouville space in order to properly take into account decoherence poses significant numerical challenges, as the dimension scales quadratically compared to Hilbert space. However, it can be shown that for a unitary target, the optimization only requires propagation of at most three states, instead of a full basis of Liouville space. Both for the example of trapped Rydberg atoms, and for superconducting qubits, the successful optimization of quantum gates is demonstrated, at a significantly reduced numerical cost than was previously thought possible. Together, the results of this thesis point towards a comprehensive framework for the optimization of robust quantum gates, paving the way for the future realization of quantum computers.
Resumo:
Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.