11 resultados para Training algorithms

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dieser Arbeit wird ein Verfahren zum Einsatz neuronaler Netzwerke vorgestellt, das auf iterative Weise Klassifikation und Prognoseschritte mit dem Ziel kombiniert, bessere Ergebnisse der Prognose im Vergleich zu einer einmaligen hintereinander Ausführung dieser Schritte zu erreichen. Dieses Verfahren wird am Beispiel der Prognose der Windstromerzeugung abhängig von der Wettersituation erörtert. Eine Verbesserung wird in diesem Rahmen mit einzelnen Ausreißern erreicht. Verschiedene Aspekte werden in drei Kapiteln diskutiert: In Kapitel 1 werden die verwendeten Daten und ihre elektronische Verarbeitung vorgestellt. Die Daten bestehen zum einen aus Windleistungshochrechnungen für die Bundesrepublik Deutschland der Jahre 2011 und 2012, welche als Transparenzanforderung des Erneuerbaren Energiegesetzes durch die Übertragungsnetzbetreiber publiziert werden müssen. Zum anderen werden Wetterprognosen, die der Deutsche Wetterdienst im Rahmen der Grundversorgung kostenlos bereitstellt, verwendet. Kapitel 2 erläutert zwei aus der Literatur bekannte Verfahren - Online- und Batchalgorithmus - zum Training einer selbstorganisierenden Karte. Aus den dargelegten Verfahrenseigenschaften begründet sich die Wahl des Batchverfahrens für die in Kapitel 3 erläuterte Methode. Das in Kapitel 3 vorgestellte Verfahren hat im modellierten operativen Einsatz den gleichen Ablauf, wie eine Klassifikation mit anschließender klassenspezifischer Prognose. Bei dem Training des Verfahrens wird allerdings iterativ vorgegangen, indem im Anschluss an das Training der klassenspezifischen Prognose ermittelt wird, zu welcher Klasse der Klassifikation ein Eingabedatum gehören sollte, um mit den vorliegenden klassenspezifischen Prognosemodellen die höchste Prognosegüte zu erzielen. Die so gewonnene Einteilung der Eingaben kann genutzt werden, um wiederum eine neue Klassifikationsstufe zu trainieren, deren Klassen eine verbesserte klassenspezifisch Prognose ermöglichen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop several algorithms for computations in Galois extensions of p-adic fields. Our algorithms are based on existing algorithms for number fields and are exact in the sense that we do not need to consider approximations to p-adic numbers. As an application we describe an algorithmic approach to prove or disprove various conjectures for local and global epsilon constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining means to summarize information from large amounts of raw data. It is one of the key technologies in many areas of economy, science, administration and the internet. In this report we introduce an approach for utilizing evolutionary algorithms to breed fuzzy classifier systems. This approach was exercised as part of a structured procedure by the students Achler, Göb and Voigtmann as contribution to the 2006 Data-Mining-Cup contest, yielding encouragingly positive results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we discuss the application of global optimization and Evolutionary Computation to distributed systems. We therefore selected and classified many publications, giving an insight into the wide variety of optimization problems which arise in distributed systems. Some interesting approaches from different areas will be discussed in greater detail with the use of illustrative examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Arbeit werden Algorithmen zur Untersuchung der äquivarianten Tamagawazahlvermutung von Burns und Flach entwickelt. Zunächst werden Algorithmen angegeben mit denen die lokale Fundamentalklasse, die globale Fundamentalklasse und Tates kanonische Klasse berechnet werden können. Dies ermöglicht unter anderem Berechnungen in Brauergruppen von Zahlkörpererweiterungen. Anschließend werden diese Algorithmen auf die Tamagawazahlvermutung angewendet. Die Epsilonkonstantenvermutung kann dadurch für alle Galoiserweiterungen L|K bewiesen werden, bei denen L in einer Galoiserweiterung E|Q vom Grad kleiner gleich 15 eingebettet werden kann. Für die Tamagawazahlvermutung an der Stelle 1 wird ein Algorithmus angegeben, der die Vermutung für ein gegebenes Fallbeispiel L|Q numerischen verifizieren kann. Im Spezialfall, dass alle Charaktere rational oder abelsch sind, kann dieser Algorithmus die Vermutung für L|Q sogar beweisen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Krishin Vigyan Kendras-KVKs (Farm Science Centres) have been established by the Indian Council of Agricultural Research in 569 districts. The trust areas of KVKs are refinement and demonstration of technologies, and training of farmers and extension functionaries. Imparting vocational trainings in agriculture and allied fields for the rural youth is one of its mandates. The study was undertaken to do a formative and summative (outcome and impact) evaluation of the beekeeping and mushroom growing vocational training programmes in the Indian state of Punjab. One-group pre and post evaluation design was employed for conducting a formative and outcome evaluation. The knowledge tests were administered to 35 beekeeping and 25 mushroom cultivation trainees, before and after the training programmes organized in 2004. The trainees significantly gained in knowledge. A separate sample of 640 trainees, trained prior to 2004, was selected for finding the adoption status. Out of 640, a sample of 200 was selected by proportionate sampling technique out of three categories, namely: non-adopters, discontinued-adopters and continued-adopters for evaluating the long-term impact of these training programmes. Ex-post-facto one-shot case study design was applied for this impact analysis. The vocational training programmes have resulted in continued-adoption of beekeeping and mushroom cultivation enterprises by 20% and 51% trained farmers, respectively. Age and trainee occupation had significant influence on the adoption decision of beekeeping vocation, whereas education and family income significantly affected the adoption decision of mushroom cultivation. The continued adopters of beekeeping and mushroom growing had increased their family income by 49% and 24%, respectively. These training programmes are augmenting the dwindling farm income of the farmers in Indian Punjab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped. ----- Methods: Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets. ----- Results: Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams. ----- Conclusions: Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dieser Dissertation werden Methoden zur optimalen Aufgabenverteilung in Multirobotersystemen (engl. Multi-Robot Task Allocation – MRTA) zur Inspektion von Industrieanlagen untersucht. MRTA umfasst die Verteilung und Ablaufplanung von Aufgaben für eine Gruppe von Robotern unter Berücksichtigung von operativen Randbedingungen mit dem Ziel, die Gesamteinsatzkosten zu minimieren. Dank zunehmendem technischen Fortschritt und sinkenden Technologiekosten ist das Interesse an mobilen Robotern für den Industrieeinsatz in den letzten Jahren stark gestiegen. Viele Arbeiten konzentrieren sich auf Probleme der Mobilität wie Selbstlokalisierung und Kartierung, aber nur wenige Arbeiten untersuchen die optimale Aufgabenverteilung. Da sich mit einer guten Aufgabenverteilung eine effizientere Planung erreichen lässt (z. B. niedrigere Kosten, kürzere Ausführungszeit), ist das Ziel dieser Arbeit die Entwicklung von Lösungsmethoden für das aus Inspektionsaufgaben mit Einzel- und Zweiroboteraufgaben folgende Such-/Optimierungsproblem. Ein neuartiger hybrider Genetischer Algorithmus wird vorgestellt, der einen teilbevölkerungbasierten Genetischen Algorithmus zur globalen Optimierung mit lokalen Suchheuristiken kombiniert. Zur Beschleunigung dieses Algorithmus werden auf die fittesten Individuen einer Generation lokale Suchoperatoren angewendet. Der vorgestellte Algorithmus verteilt die Aufgaben nicht nur einfach und legt den Ablauf fest, sondern er bildet auch temporäre Roboterverbünde für Zweiroboteraufgaben, wodurch räumliche und zeitliche Randbedingungen entstehen. Vier alternative Kodierungsstrategien werden für den vorgestellten Algorithmus entworfen: Teilaufgabenbasierte Kodierung: Hierdurch werden alle möglichen Lösungen abgedeckt, allerdings ist der Suchraum sehr groß. Aufgabenbasierte Kodierung: Zwei Möglichkeiten zur Zuweisung von Zweiroboteraufgaben wurden implementiert, um die Effizienz des Algorithmus zu steigern. Gruppierungsbasierte Kodierung: Zeitliche Randbedingungen zur Gruppierung von Aufgaben werden vorgestellt, um gute Lösungen innerhalb einer kleinen Anzahl von Generationen zu erhalten. Zwei Umsetzungsvarianten werden vorgestellt. Dekompositionsbasierte Kodierung: Drei geometrische Zerlegungen wurden entworfen, die Informationen über die räumliche Anordnung ausnutzen, um Probleme zu lösen, die Inspektionsgebiete mit rechteckigen Geometrien aufweisen. In Simulationsstudien wird die Leistungsfähigkeit der verschiedenen hybriden Genetischen Algorithmen untersucht. Dazu wurde die Inspektion von Tanklagern einer Erdölraffinerie mit einer Gruppe homogener Inspektionsroboter als Anwendungsfall gewählt. Die Simulationen zeigen, dass Kodierungsstrategien, die auf der geometrischen Zerlegung basieren, bei einer kleinen Anzahl an Generationen eine bessere Lösung finden können als die anderen untersuchten Strategien. Diese Arbeit beschäftigt sich mit Einzel- und Zweiroboteraufgaben, die entweder von einem einzelnen mobilen Roboter erledigt werden können oder die Zusammenarbeit von zwei Robotern erfordern. Eine Erweiterung des entwickelten Algorithmus zur Behandlung von Aufgaben, die mehr als zwei Roboter erfordern, ist möglich, würde aber die Komplexität der Optimierungsaufgabe deutlich vergrößern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wird eine gemeinsame Optimierung der Hybrid-Betriebsstrategie und des Verhaltens des Verbrennungsmotors vorgestellt. Die Übernahme von den im Steuergerät verwendeten Funktionsmodulen in die Simulationsumgebung für Fahrzeuglängsdynamik stellt eine effiziente Applikationsmöglichkeit der Originalparametrierung dar. Gleichzeitig ist es notwendig, das Verhalten des Verbrennungsmotors derart nachzubilden, dass das stationäre und das dynamische Verhalten, inklusive aller relevanten Einflussmöglichkeiten, wiedergegeben werden kann. Das entwickelte Werkzeug zur Übertragung der in Ascet definierten Steurgerätefunktionen in die Simulink-Simulationsumgebung ermöglicht nicht nur die Simulation der relevanten Funktionsmodule, sondern es erfüllt auch weitere wichtige Eigenschaften. Eine erhöhte Flexibilität bezüglich der Daten- und Funktionsstandänderungen, sowie die Parametrierbarkeit der Funktionsmodule sind Verbesserungen die an dieser Stelle zu nennen sind. Bei der Modellierung des stationären Systemverhaltens des Verbrennungsmotors erfolgt der Einsatz von künstlichen neuronalen Netzen. Die Auswahl der optimalen Neuronenanzahl erfolgt durch die Betrachtung des SSE für die Trainings- und die Verifikationsdaten. Falls notwendig, wird zur Sicherstellung der angestrebten Modellqualität, das Interpolationsverhalten durch Hinzunahme von Gauß-Prozess-Modellen verbessert. Mit den Gauß-Prozess-Modellen werden hierbei zusätzliche Stützpunkte erzeugt und mit einer verminderten Priorität in die Modellierung eingebunden. Für die Modellierung des dynamischen Systemverhaltens werden lineare Übertragungsfunktionen verwendet. Bei der Minimierung der Abweichung zwischen dem Modellausgang und den Messergebnissen wird zusätzlich zum SSE das 2σ-Intervall der relativen Fehlerverteilung betrachtet. Die Implementierung der Steuergerätefunktionsmodule und der erstellten Steller-Sensor-Streckenmodelle in der Simulationsumgebung für Fahrzeuglängsdynamik führt zum Anstieg der Simulationszeit und einer Vergrößerung des Parameterraums. Das aus Regelungstechnik bekannte Verfahren der Gütevektoroptimierung trägt entscheidend zu einer systematischen Betrachtung und Optimierung der Zielgrößen bei. Das Ergebnis des Verfahrens ist durch das Optimum der Paretofront der einzelnen Entwurfsspezifikationen gekennzeichnet. Die steigenden Simulationszeiten benachteiligen Minimumsuchverfahren, die eine Vielzahl an Iterationen benötigen. Um die Verwendung einer Zufallsvariablen, die maßgeblich zur Steigerung der Iterationanzahl beiträgt, zu vermeiden und gleichzeitig eine Globalisierung der Suche im Parameterraum zu ermöglichen wird die entwickelte Methode DelaunaySearch eingesetzt. Im Gegensatz zu den bekannten Algorithmen, wie die Partikelschwarmoptimierung oder die evolutionären Algorithmen, setzt die neu entwickelte Methode bei der Suche nach dem Minimum einer Kostenfunktion auf eine systematische Analyse der durchgeführten Simulationsergebnisse. Mit Hilfe der bei der Analyse gewonnenen Informationen werden Bereiche mit den bestmöglichen Voraussetzungen für ein Minimum identifiziert. Somit verzichtet das iterative Verfahren bei der Bestimmung des nächsten Iterationsschrittes auf die Verwendung einer Zufallsvariable. Als Ergebnis der Berechnungen steht ein gut gewählter Startwert für eine lokale Optimierung zur Verfügung. Aufbauend auf der Simulation der Fahrzeuglängsdynamik, der Steuergerätefunktionen und der Steller-Sensor-Streckenmodelle in einer Simulationsumgebung wird die Hybrid-Betriebsstrategie gemeinsam mit der Steuerung des Verbrennungsmotors optimiert. Mit der Entwicklung und Implementierung einer neuen Funktion wird weiterhin die Verbindung zwischen der Betriebsstrategie und der Motorsteuerung erweitert. Die vorgestellten Werkzeuge ermöglichten hierbei nicht nur einen Test der neuen Funktionalitäten, sondern auch eine Abschätzung der Verbesserungspotentiale beim Verbrauch und Abgasemissionen. Insgesamt konnte eine effiziente Testumgebung für eine gemeinsame Optimierung der Betriebsstrategie und des Verbrennungsmotorverhaltens eines Hybridfahrzeugs realisiert werden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Dissertation untersucht das Leseverhalten thailändischer Deutschlernender mit dem Ziel, ihre Fähigkeit zum kritischen Lesen unter Anwendung des MURDER-Schemas im fremdsprachlichen Deutschunterricht zu fördern. Neben der Lesefertigkeit soll aufgrund der bestehenden Zusammenhänge zusätzlich das kritische Denken der Lernenden gefördert werden.