5 resultados para Traction power system

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weltweit leben mehr als 2 Milliarden Menschen in ländlichen Gebieten. Als Konzept für die elektrische Energieversorgung solcher Gebiete kommen dezentrale elektrische Energieversorgungseinheiten zum Einsatz, die lokal verfügbare erneuerbare Ressourcen nutzen. Stand der Technik bilden Einheiten, die auf PV-Diesel-Batterie System basieren. Die verwendeten Versorgungsskonzepte in Hybridsystemen sind durch den Einsatz von Batterien als Energiespeicher meist wenig zuverlässig und teuer. Diese Energiespeicher sind sehr aufwendig zu überwachen und schwerig zu entsorgen. Den Schwerpunkt dieser Arbeit bildet die Entwicklung eines neuen Hybridsystems mit einem Wasserreservoir als Energiespeicher. Dieses Konzept eignet sich für Bergregionen in Entwicklungsländern wie Nepal, wo z.B. neben der solaren Strahlung kleine Flüsse in großer Anzahl vorhanden sind. Das Hybridsystem verfügt über einen Synchrongenerator, der die Netzgrößen Frequenz und Spannung vorgibt und zusätzlich unterstützen PV und Windkraftanlage die Versorgung. Die Wasserkraftanlage soll den Anteil der erneuerbaren Energienutzung erhöhen. Die Erweiterung des Systems um ein Dieselaggregat soll die Zuverlässigkeit der Versorgung erhöhen. Das Hybridsystem inkl. der Batterien wird modelliert und simuliert. Anschließend werden die Simulations- und Messergebnisse verglichen, um eine Validierung des Modells zu erreichen. Die Regelungsstruktur ist aufgrund der hohen Anzahl an Systemen und Parametern sehr komplex. Sie wird mit dem Simulationstool Matlab/Simulink nachgebildet. Das Verhalten des Gesamtsystems wird unter verschiedene Lasten und unterschiedlichen meteorologischen Gegebenheiten untersucht. Ein weiterer Schwerpunkt dieser Arbeit ist die Entwicklung einer modularen Energiemanagementeinheit, die auf Basis der erneuerbaren Energieversorgung aufgebaut wird. Dabei stellt die Netzfrequenz eine wichtige Eingangsgröße für die Regelung dar. Sie gibt über die Wirkleistungsstatik die Leistungsänderung im Netz wider. Über diese Angabe und die meteorologischen Daten kann eine optimale wirtschaftliche Aufteilung der Energieversorgung berechnet und eine zuverlässige Versorgung gewährleistet werden. Abschließend wurde die entwickelte Energiemanagementeinheit hardwaretechnisch aufgebaut, sowie Sensoren, Anzeige- und Eingabeeinheit in die Hardware integriert. Die Algorithmen werden in einer höheren Programmiersprache umgesetzt. Die Simulationen unter verschiedenen meteorologischen und netztechnischen Gegebenheiten mit dem entwickelten Model eines Hybridsystems für die elektrische Energieversorgung haben gezeigt, dass das verwendete Konzept mit einem Wasserreservoir als Energiespeicher ökologisch und ökonomisch eine geeignete Lösung für Entwicklungsländer sein kann. Die hardwaretechnische Umsetzung des entwickelten Modells einer Energiemanagementeinheit hat seine sichere Funktion bei der praktischen Anwendung in einem Hybridsystem bestätigen können.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A stand-alone power system is an autonomous system that supplies electricity to the user load without being connected to the electric grid. This kind of decentralized system is frequently located in remote and inaccessible areas. It is essential for about one third of the world population which are living in developed or isolated regions and have no access to an electricity utility grid. The most people live in remote and rural areas, with low population density, lacking even the basic infrastructure. The utility grid extension to these locations is not a cost effective option and sometimes technically not feasible. The purpose of this thesis is the modelling and simulation of a stand-alone hybrid power system, referred to as “hydrogen Photovoltaic-Fuel Cell (PVFC) hybrid system”. It couples a photovoltaic generator (PV), an alkaline water electrolyser, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to give different system topologies. The system is intended to be an environmentally friendly solution since it tries maximising the use of a renewable energy source. Electricity is produced by a PV generator to meet the requirements of a user load. Whenever there is enough solar radiation, the user load can be powered totally by the PV electricity. During periods of low solar radiation, auxiliary electricity is required. An alkaline high pressure water electrolyser is powered by the excess energy from the PV generator to produce hydrogen and oxygen at a pressure of maximum 30bar. Gases are stored without compression for short- (hourly or daily) and long- (seasonal) term. A proton exchange membrane (PEM) fuel cell is used to keep the system’s reliability at the same level as for the conventional system while decreasing the environmental impact of the whole system. The PEM fuel cell consumes gases which are produced by an electrolyser to meet the user load demand when the PV generator energy is deficient, so that it works as an auxiliary generator. Power conditioning units are appropriate for the conversion and dispatch the energy between the components of the system. No batteries are used in this system since they represent the weakest when used in PV systems due to their need for sophisticated control and their short lifetime. The model library, ISET Alternative Power Library (ISET-APL), is designed by the Institute of Solar Energy supply Technology (ISET) and used for the simulation of the hybrid system. The physical, analytical and/or empirical equations of each component are programmed and implemented separately in this library for the simulation software program Simplorer by C++ language. The model parameters are derived from manufacturer’s performance data sheets or measurements obtained from literature. The identification and validation of the major hydrogen PVFC hybrid system component models are evaluated according to the measured data of the components, from the manufacturer’s data sheet or from actual system operation. Then, the overall system is simulated, at intervals of one hour each, by using solar radiation as the primary energy input and hydrogen as energy storage for one year operation. A comparison between different topologies, such as DC or AC coupled systems, is carried out on the basis of energy point of view at two locations with different geographical latitudes, in Kassel/Germany (Europe) and in Cairo/Egypt (North Africa). The main conclusion in this work is that the simulation method of the system study under different conditions could successfully be used to give good visualization and comparison between those topologies for the overall performance of the system. The operational performance of the system is not only depending on component efficiency but also on system design and consumption behaviour. The worst case of this system is the low efficiency of the storage subsystem made of the electrolyser, the gas storage tank, and the fuel cell as it is around 25-34% at Cairo and 29-37% at Kassel. Therefore, the research for this system should be concentrated in the subsystem components development especially the fuel cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die wachsende Weltbevölkerung bedingt einen höheren Energiebedarf, dies jedoch unter der Beachtung der nachhaltigen Entwicklung. Die derzeitige zentrale Versorgung mit elektrischer Energie wird durch wenige Erzeugungsanlagen auf der Basis von fossilen Primärenergieträgern und Kernenergie bestimmt, die die räumlich verteilten Verbraucher zuverlässig und wirtschaftlich über ein strukturiertes Versorgungssystem beliefert. In den Elektrizitätsversorgungsnetzen sind keine nennenswerten Speicherkapazitäten vorhanden, deshalb muss die von den Verbrauchern angeforderte Energie resp. Leistung jederzeit von den Kraftwerken gedeckt werden. Bedingt durch die Liberalisierung der Energiemärkte und die geforderte Verringerung der Energieabhängigkeit Luxemburgs, unterliegt die Versorgung einem Wandel hin zu mehr Energieeffizienz und erhöhter Nutzung der dargebotsabhängigen Energiequellen. Die Speicherung der aus der Windkraft erzeugten elektrischen Energie, wird in den Hochleistungs-Bleiakkumulatoren, errichtet im ländlichen Raum in der Nähe der Windkraftwerke, eingespeichert. Die zeitversetzte Einspeisung dieser gespeicherten elektrischen Energie in Form von veredelter elektrischer Leistung während den Lastspitzen in das 20 kV-Versorgungsnetz der CEGEDEL stellt die Innovation in der luxemburgischen Elektrizitätsversorgung dar. Die Betrachtungen beschränken sich somit auf die regionale, relativ kleinräumige Einbindung der Windkraft in die elektrische Energieversorgung des Großherzogtums Luxemburg. Die Integration der Windkraft im Regionalbereich wird in den Vordergrund der Untersuchung gerückt. Überregionale Ausgleichseffekte durch Hochspannungsleitungen der 230/400 kV-Systeme werden außer Acht gelassen. Durch die verbrauchernahe Bereitstellung von elektrischer Spitzenleistung vermindern sich ebenfalls die Übertragungskosten aus den entfernten Spitzenlastkraftwerken, der Ausbau von Kraftwerkskapazitäten kann in die Zukunft verschoben werden. Die Emission von Treibhausgasen in thermischen Kraftwerken wird zum Teil reduziert. Die Berechnungen der Wirtschaftlichkeit von Hybridanlagen, zusammengesetzt aus den Windkraftwerken und den Hochleistungs-Bleiakkumulatoren bringen weitere Informationen zum Einsatz dieser dezentralen Speichern, als Partner der nachhaltigen Energieversorgung im ländlichen Raum. Die untersuchte Einspeisung von erneuerbarer Spitzenleistung lässt sich auch in die Entwicklungsländer übertragen, welche nicht über zentrale Kraftwerkskapazitäten und Verteilungsnetze verfügen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With Chinas rapid economic development during the last decades, the national demand for livestock products has quadrupled within the last 20 years. Most of that increase in demand has been answered by subsidized industrialized production systems, while million of smallholders, which still provide the larger share of livestock products in the country, have been neglected. Fostering those systems would help China to lower its strong urban migration streams, enhance the livelihood of poorer rural population and provide environmentally save livestock products which have a good chance to satisfy customers demand for ecological food. Despite their importance, China’s smallholder livestock keepers have not yet gained appropriate attention from governmental authorities and researchers. However, profound analysis of those systems is required so that adequate support can lead to a better resource utilization and productivity in the sector. To this aim, this pilot study analyzes smallholder livestock production systems in Xishuangbanna, located in southern China. The area is bordered by Lao and Myanmar and geographically counts as tropical region. Its climate is characterized by dry and temperate winters and hot summers with monsoon rains from May to October. While the regionis plain, at about 500 m asl above sea level in the south, outliers of the Himalaya mountains reach out into the north of Xishuangbanna, where the highest peak reaches 2400 m asl. Except of one larger city, Jinghong, Xishuangbanna mainly is covered by tropical rainforest, areas under agricultural cultivation and villages. The major income is generated through inner-Chinese tourism and agricultural production. Intensive rubber plantations are distinctive for the lowland plains while small-scaled traditional farms are scattered in the mountane regions. In order to determine the current state and possible future chances of smallholder livestock production in that region, this study analyzed the current status of the smallholder livestock sector in the Naban River National Nature Reserve (NRNNR), an area which is largely representative for the whole prefecture. It covers an area of about 50square kilometer and reaches from 470 up to 2400 m asl. About 5500 habitants of different ethnic origin are situated in 24 villages. All data have been collected between October 2007 and May 2010. Three major objectives have been addressed in the study: 1. Classifying existing pig production systems and exploring respective pathways for development 2. Quantifying the performance of pig breeding systemsto identify bottlenecks for production 3. Analyzing past and current buffalo utilization to determine the chances and opportunities of buffalo keeping in the future In order to classify the different pig production s ystems, a baseline survey (n=204, stratified cluster sampling) was carried out to gain data about livestock species, numbers, management practices, cultivated plant species and field sizes as well associo-economic characteristics. Sampling included two clusters at village level (altitude, ethnic affiliation), resulting in 13 clusters of which 13-17 farms were interviewed respectively. Categorical Principal Component Analysis (CatPCA) and a two-step clustering algorithm have been applied to identify determining farm characteristics and assort recorded households into classes of livestock production types. The variables keep_sow_yes/no, TLU_pig, TLU_buffalo, size_of_corn_fields, altitude_class, size_of_tea_plantationand size_of_rubber_fieldhave been found to be major determinants for the characterization of the recorded farms. All farms have extensive or semi-intensive livestock production, pigs and buffaloes are predominant livestock species while chicken and aquaculture are available but play subordinate roles for livelihoods. All pig raisers rely on a single local breed, which is known as Small Ear Pig (SMEP) in the region. Three major production systemshave been identified: Livestock-corn based LB; 41%), rubber based (RB; 39%) and pig based (PB;20%) systems. RB farms earn high income from rubber and fatten 1.9 ±1.80 pigs per household (HH), often using purchased pig feed at markets. PB farms own similar sized rubber plantations and raise 4.7 ±2.77 pigs per HH, with fodder mainly being cultivated and collected in theforest. LB farms grow corn, rice and tea and keep 4.6 ±3.32 pigs per HH, also fed with collected and cultivated fodder. Only 29% of all pigs were marketed (LB: 20%; RB: 42%; PB: 25%), average annual mortality was 4.0 ±4.52 pigs per farm (LB: 4.6 ±3.68; RB: 1.9 ±2.14; PB: 7.1 ±10.82). Pig feed mainly consists of banana pseudo stem, corn and rice hives and is prepared in batches about two to three times per week. Such fodder might be sufficient in energy content but lacks appropriate content of protein. Pigs therefore suffer from malnutrition, which becomes most critical in the time before harvest season around October. Farmers reported high occurrences of gastrointestinal parasites in carcasses and often pig stables were wet and filled with manure. Deficits in nutritional and hygienic management are major limits for development and should be the first issues addressed to improve productivity. SME pork was found to be known and referred by local customers in town and by richer lowland farmers. However, high prices and lacking availability of SME pork at local wet-markets were the reasons which limited purchase. If major management constraints are overcome, pig breeders (PB and LB farms) could increase the share of marketed pigs for town markets and provide fatteners to richer RB farmers. RB farmers are interested in fattening pigs for home consumption but do not show any motivation for commercial pig raising. To determine the productivity of input factors in pig production, eproductive performance, feed quality and quantity as well as weight development of pigs under current management were recorded. The data collection included a progeny history survey covering 184 sows and 437 farrows, bi-weekly weighing of 114 pigs during a 16-months time-span on 21 farms (10 LB and 11 PB) as well as the daily recording of feed quality and quantity given to a defined number of pigs on the same 21 farms. Feed samples of all recorded ingredients were analyzed for their respective nutrient content. Since no literature values on thedigestibility of banana pseudo stem – which is a major ingredient of traditional pig feed in NRNNR – were found, a cross-sectional digestibility trial with 2x4 pigs has been conducted on a station in the research area. With the aid of PRY Herd Life Model, all data have been utilized to determine thesystems’ current (Status Quo = SQ) output and the productivity of the input factor “feed” in terms of saleable life weight per kg DM feed intake and monetary value of output per kg DM feed intake.Two improvement scenarios were simulated, assuming 1) that farmers adopt a culling managementthat generates the highest output per unit input (Scenario 1; SC I) and 2) that through improved feeding, selected parameters of reproduction are improved by 30% (SC II). Daily weight gain averaged 55 ± 56 g per day between day 200 and 600. The average feed energy content of traditional feed mix was 14.92 MJ ME. Age at first farrowing averaged 14.5 ± 4.34 months, subsequent inter-farrowing interval was 11.4 ± 2.73 months. Littersize was 5.8 piglets and weaning age was 4.3 ± 0.99 months. 18% of piglets died before weaning. Simulating pig production at actualstatus, it has been show that monetary returns on inputs (ROI) is negative (1:0.67), but improved (1:1.2) when culling management was optimized so that highest output is gained per unit feed input. If in addition better feeding, controlled mating and better resale prices at fixed dates were simulated, ROI further increased to 1:2.45, 1:2.69, 1:2.7 and 1:3.15 for four respective grower groups. Those findings show the potential of pork production, if basic measures of improvement are applied. Futureexploration of the environment, including climate, market-season and culture is required before implementing the recommended measures to ensure a sustainable development of a more effective and resource conserving pork production in the future. The two studies have shown that the production of local SME pigs plays an important role in traditional farms in NRNNR but basic constraints are limiting their productivity. However, relatively easy approaches are sufficient for reaching a notable improvement. Also there is a demand for more SME pork on local markets and, if basic constraints have been overcome, pig farmers could turn into more commercial producers and provide pork to local markets. By that, environmentally safe meat can be offered to sensitive consumers while farmers increase their income and lower the risk of external shocks through a more diverse income generating strategy. Buffaloes have been found to be the second important livestock species on NRNNR farms. While they have been a core resource of mixed smallholderfarms in the past, the expansion of rubber tree plantations and agricultural mechanization are reasons for decreased swamp buffalo numbers today. The third study seeks to predict future utilization of buffaloes on different farm types in NRNNR by analyzing the dynamics of its buffalo population and land use changes over time and calculating labor which is required for keeping buffaloes in view of the traction power which can be utilized for field preparation. The use of buffaloes for field work and the recent development of the egional buffalo population were analyzed through interviews with 184 farmers in 2007/2008 and discussions with 62 buffalo keepers in 2009. While pig based farms (PB; n=37) have abandoned buffalo keeping, 11% of the rubber based farms (RB; n=71) and 100% of the livestock-corn based farms (LB; n=76) kept buffaloes in 2008. Herd size was 2.5 ±1.80 (n=84) buffaloes in early 2008 and 2.2 ±1.69 (n=62) in 2009. Field work on own land was the main reason forkeeping buffaloes (87.3%), but lending work buffaloes to neighbors (79.0%) was also important. Other purposes were transport of goods (16.1%), buffalo trade (11.3%) and meat consumption(6.4%). Buffalo care required 6.2 ±3.00 working hours daily, while annual working time of abuffalo was 294 ±216.6 hours. The area ploughed with buffaloes remained constant during the past 10 years despite an expansion of land cropped per farm. Further rapid replacement of buffaloes by tractors is expected in the near future. While the work economy is drastically improved by the use of tractors, buffaloes still can provide cheap work force and serve as buffer for economic shocks on poorer farms. Especially poor farms, which lack alternative assets that could quickly be liquidizedin times of urgent need for cash, should not abandon buffalo keeping. Livestock has been found to be a major part of small mixed farms in NRNNR. The general productivity was low in both analyzed species, buffaloes and pigs. Productivity of pigs can be improved through basic adjustments in feeding, reproductive and hygienic management, and with external support pig production could further be commercialized to provide pork and weaners to local markets and fattening farms. Buffalo production is relatively time intensive, and only will be of importance in the future to very poor farms and such farms that cultivate very small terraces on steep slopes. These should be encouraged to further keep buffaloes. With such measures, livestock production in NRNNR has good chances to stay competitive in the future.